Чтение онлайн

ЖАНРЫ

Биотехнология: что это такое?
Шрифт:

Нет, все вышесказанное соответствует действительности. Исторический факт вакцинации, осуществленной Э. Дженнером, не вызывает ни у кого никакого сомнения. Но время нередко открывает в старом, казалось бы, давно и тщательно изученном, такие грани и такие возможности, что с ними связывают гораздо большие надежды и перспективы, чем с первопричинным явлением.

Так началась и новая жизнь «старой» оспенной вакцины. По крайней мере, еще три года назад американский журнал «Science» сообщил о том, что группе ученых под руководством Э. Паолетти удалось на основе вируса коровьей оспы, пользуясь методом генетической инженерии, создать поливалентную вакцину. Лабораторные исследования, проведенные со всей тщательностью и типично научной педантичностью, вполне убедительно доказали, что она успешно защищает подопытных кроликов от гепатита В, герпеса и гриппа одновременно.

Но почему все-таки и на сей раз предпочтение было отдано вирусу коровьей оспы?

Да потому, что это большой, крупный вирус, в его ДНК можно ввести сразу несколько чужеродных генов, и она начнет успешно синтезировать кодируемые ими белки. В том числе и антигены, на которые иммунная система вакционированного животного образует антитела, способные нейтрализовывать сразу три вида вируса — герпеса, гепатита В и гриппа. Но как все-таки рождалась поливакцина?

Поэтапно, постепенно «складываясь» из вакцин, созданных методом рекомбинантной ДНК против каждого в отдельности из входящих в ее состав вирусов. Порядок «монтажных» работ был приблизительно следующим: заранее выделенный ген, кодирующий антиген вируса гриппа, исследователи встроили в фрагмент ДНК вируса осповакцины.

Приключения «гибридного фрагмента» отнюдь на этом не закончились. Ему еще предстояло вместе с вирусом осповакцины проникнуть в клетки иммунизированного животного, чтобы, как только вирус начнет размножаться, встроиться, вписаться в его ДНК. В результате этих трансформаций получилась вакцина, состоящая из двух компонентов — вакцин против оспы и гриппа.

Аналогичная процедура проделывалась учеными и с генами вируса герпеса, гепатита. Манипуляции и превращения длились до тех пор, пока долгожданная вакцина, очищенная путем клонирования, размноженная в культуре ткани, не оказалась готовой к применению. Но пока что на... животных. По крайней мере, Э. Паолетти, автор вышеназванных работ, заявивший о них в печати три года назад, на ближайшее время клинических испытаний на людях проводить не собирался. И вдруг... сообщение в московской прессе: «Вирус поможет врачам в борьбе с опасным заболеванием» и то самое интригующее вступление к информации, которое я чуть выше цитировал.

В чем же суть исследований, осуществленных советскими учеными? В том, чтобы, «обманув» бдительность иммунитета, ввести в организм не возбудитель гепатита В — грозного заболевания, нередко поражающего ребенка еще в утробе матери, а лишь его «портрет» — осколок, кусочек белковой оболочки вируса. Этого, как и предполагали исследователи, оказалось вполне достаточно, чтобы иммунная система организма, и прежде всего ее верные солдаты — лимфоциты запомнили, как именно выглядит «лицо врага».

Обрывок, «фотографию» белковой оболочки вируса гепатита представил ученым Институт органического синтеза АН Латвии, в лабораториях которого получили и, естественно, изучили ДНК вируса гепатита В. В результате кропотливых, ювелирных по механике исполнения работ исследователям удалось отыскать в «главной молекуле», как все чаще называют ДНК, тот единственный ген, который кодирует продуцирование вирусного белка.

Человек с портретом проходит через турникет

Тогда-то и родилась идея вшить его в вирус осповакцины, реализовать которую взялись ученые сразу трех институтов: Института общей генетики АН СССР, Московского НИИ вирусных препаратов, Института биохимии и физиологии микроорганизмов АН СССР. «Работать с вакциной удобно, — рассказывает доктор медицинских наук А. Альтштейн, — нужный ген можно вставить один раз, а потом разводить измененные вирусы в лаборатории».

Правда, существует и другой путь «внедрения» нужного фрагмента белковой оболочки гепатитного вируса в ДНК возбудителя оспы. По нему как раз и пошли ученые из Института молекулярной биологии АН СССР и Института вирусологии АМН СССР, «пересаживающие» ДНК вируса гепатита В в дрожжевые грибки, с их помощью нарабатывая вирусные белки-антигены. Теперь оставалось только ввести эти антигены в кровь иммунизируемого животного (а в дальнейшем и человека), и защита от гепатита В гарантирована.

Но, согласитесь, один путь вовсе не исключает другого, поскольку у каждого свои преимущества и достоинства. Так, препарат, полученный с помощью традиционных биотехнологических методов, может оказаться особенно хорош при необходимости нанесения возбудителю «массированного удара», столь необходимого, например, во время вспышки эпидемии. Зато живая вакцина

незаменима при массовой профилактике. К тому же производство ее, по сравнению с «конкурирующей», намного дешевле. А это тоже немаловажное обстоятельство. И кто знает, может, создание вакцины оспенно-гепатитного назначения отнюдь не завершает поиска в данном направлении? Может, стоит всерьез подумать и над созданием поливалентных вакцин, состоящих из трех и более компонентов, как это делают американские исследователи? По крайней мере, такая идея уже не дает покоя нашим ученым.

Что ж, работы впереди — непочатый край. Медицина и здравоохранение всех стран ждут не дождутся вакцин против рака и СПИДа. И чем раньше эта проблема будет решена, тем больше человеческих жизней сохранит она на планете.

Но при чем здесь вакцина против рака и СПИДа, ведь разговор шел о вакцинах, в ДНК которых еще вроде бы никому не удавалось вписать ни возбудитель СПИДа, ни онкоген, предвижу я недоуменный вопрос читателя.

Да, пока не удавалось. Но разве такая возможность исключается? Отнюдь. Более того, если долгожданная антиспидовая или антираковая вакцина все же в конце концов станет реальностью, то, вне всяких сомнений, в основе ее будет лежать принцип повышения защитных сил организма. Тот самый принцип, который и сегодня является определяющим для всех используемых в медицине и животноводстве вакцин. Ибо иммунитет и есть тот самый мощный аккумулятор всех потенций и сил организма, концентрированная энергия которого в состоянии одолеть любую инфекцию. Помните профессора Юрия Ивановича Морозова, впервые в мире осуществившего пересадку комплекса тимус-грудина кубинским ребятишкам, родившимся с дефектным тимусом?

Точно таким способом ему удалось спасти от смерти и нескольких обреченных онкологических больных, пересадив им тимус погибших во время родов младенцев. Вновь обретшие защитные силы люди победили рак. Их организм, еще недавно почти разрушенный всевозможными химио- и радиотерапиями, сам, не получая извне никакой посторонней помощи, принудил регрессировать раковые клетки, как бы повернув болезнь в обратном направлении.

А раз так, сам собою напрашивается вывод, то для лечения СПИДа и рака может подойти любая вакцина, лишь бы ее действие сводилось к мобилизации защитных сил иммунитета.

Сегодня, по крайней мере теоретически, существует несколько путей создания вакцин, способных защитить человечество от СПИДа и от рака. Более того, такие вакцины созданы. Но, как нередко случается в жизни, на поверку они оказались не столь эффективными, как ожидалось. Но почему?

Потому что любая теория, как правило, хоть на немного, на самую малость; но все же расходится с практикой.

Как ведь рассуждали специалисты, принимаясь за дело? Чтоб на основе конкретного микроорганизма (вируса или бактерии) создать живую биологическую систему, вырабатывающую защитные антитела, необходимо прежде всего найти такой микроорганизм-носитель. И потом уже со всей строгостью подойти к оценке его деловых достоинств. Он не должен, во-первых, вызывать инфекционное заболевание, во-вторых, провоцировать рак и, наконец, в-третьих, обязан обладать талантом стимулирования иммунной системы (выработки антител и защитной клеточной реакции).

И здесь исследователям, как говорится, крупно повезло, потому что вирус, отвечающий всем вышеназванным требованиям, был науке давно известен. И не только ей — всему человечеству. Ведь речь идет все о том же вирусе осповакцины.

Значит, первую часть проблемы — выбор микроорганизма-носителя, можно было считать решенной. Далее события развивались по хорошо отработанной генетической инженерией схеме: в геном вируса вводится ген белка возбудителя СПИДа — и дело, казалось бы, можно было считать завершенным. Ведь теперь, размножаясь в месте прививки, вирус вакцины синтезировал не только собственные белки, но и белки вируса СПИДа, а значит и стимулировал наработку защитными силами организма антител.

Приблизительно так и создавал свой вариант вакцины американский ученый Б. Мосс. Экспериментальная проверка препарата на обезьяне подтвердила его эффективность: организм животного в больших количествах вырабатывал антитела к вирусу — возбудителю СПИДа.

И... опять загадка — антитела-то вырабатывались, а животное СПИДом заболевало. Значит, решили ученые, возможно существование антител, не нейтрализующих вирус-возбудитель! Вскоре догадка подтвердилась: такие антитела действительно есть в организме, и, более того, некоторые из них не только не «гасят» инфекцию, как им вроде бы полагалось в силу «должностной инструкции», но стимулируют ее. Вот так защита!

Поделиться с друзьями: