Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия (ФО)
Шрифт:

Ф. присущ очень большому числу веществ органического или неорганического происхождения. В основе Ф. органических веществ лежит ряд фотофизических процессов и многочисленные фотохимические реакции (см. Фотохимия ; там же о таких типичных фотофизических процессах, приводящих к Ф., как поглощение света молекулами в триплетном состоянии, в которое они перешли из синглетного, в свою очередь, под действием излучения). Если основой Ф. служат фотохимические реакции, то они сопровождаются либо перестройкой валентных связей (например, при диссоциации , димеризации, перегруппировке атомов в молекуле, окислительно-восстановительных реакциях, а также при таутомерных превращениях, см. Таутомерия ), либо изменением конфигурации атомов в молекулах (т. н. цис-транс-изомерия, см. Изомерия ). Ф.

неорганических веществ обусловлен обратимыми процессами фотопереноса электронов, приводящим к возникновению центров окраски различного типа, изменению валентности ионов металлов, а также обратимыми реакциями фотодиссоциации соединений и др.

На основе органических и неорганических фотохромных веществ разработаны фотохромные материалы . Применение этих материалов в науке и технике основано на их светочувствительности, обратимости происходящих в них фотофизических и фотохимических процессов, на появлении или изменении окраски (спектров поглощения) непосредственно под действием света, на различии термических, химических и физических свойств исходного и фотоиндуцированного состояний фотохромных веществ.

Лит.: Теренин А. Н., Фотоника молекул красителей и родственных органических соединений, Л., 1967; Барачевский В. А., Фотохромизм, «Журнал Всесоюзного Химического общества им. Д. И. Менделеева», 1974, т. 19, № 4, с. 423–33: Барачевский В. А., Дашков Г. И., Цехомский В. А., Фотохромизм и его применение, М., 1977; Photochromism, N. Y., [1971].

В. А. Барачевский.

Фотохромное стекло

Фотохро'мное стекло', неорганическое стекло , способное обратимо изменять светопропускание в видимой области спектра при воздействии ультрафиолетового или коротковолнового видимого излучения. Светочувствительность Ф. с. обусловлена фотохимическими процессами, которые могут быть связаны как с переходом электронов между элементами переменной валентности (например, EuII и CeIII ) Так и с фотолизом галогенидов тяжёлых металлов (галогениды равномерно распределены в объёме стекла в виде микрокристаллических образований). Благодаря высоким фотохромным характеристикам (оптическая плотность, достигаемая при затемнении, скорости потемнения и релаксации) и технологическим свойствам наиболее распространены стекла с галогенидами серебра. Известны также Ф. с. с галогенидами меди и хлоридом таллия. Составы стекол разнообразны (силикатные, боратные, боросиликатные, германатные и фосфатные системы). Технологические режимы синтеза Ф. с. те же, что и при получении технических стекол. Возможные области применения Ф. с.: в приборостроении (в качестве светофильтров с переменным пропусканием), строительстве (для регулирования освещённости и нагрева в зданиях), голографии (в качестве регистрирующей среды для записи информации), медицине (специальные очки), самолёто- и ракетостроении (остекление кабин) и т.д.

Лит.: Бережной А. И., Ситаллы и фотоситаллы, М., 1966; Цехомский В. А., Фотохромные стекла, «Оптико-механическая промышленность», 1967, № 7.

М. В. Артамонова.

Фотохромные материалы

Фотохро'мные материа'лы в фотографии, материалы, в которых используется явление фотохромизма органических и неорганических веществ: один из новых (получивших распространение с 60-х гг. 20 в.) типов светочувствительных материалов для регистрации изображений, записи и обработки оптических сигналов. В зависимости от области применения Ф. м. изготовляют в виде: жидких растворов; полимерных плёнок; тонких аморфных и поликристаллических слоев на гибкой и жёсткой подложке; силикатных и полимерных стекол; монокристаллов.

Наибольшее распространение получили полимерные Ф. м. на основе органических соединений (спиропиранов, дитизонатов металлов и др.), фотохромные силикатные стекла, содержащие микрокристаллы галогенидов серебра (AgBr, AgCl и др.), активированные кристаллы щёлочно-галоидных соединений (например, KCl, KBr, NaF), солей и окислов щёлочноземельных металлов с добавками (например, CaF2 /La, Ce; SrTiO3 /Fe + Mo).

Применение Ф. м. в фотографии определяется наличием у них таких свойств, как исключительно высокая разрешающая способность (теоретически минимальный элемент изображения может иметь размер порядка размера молекулы или элементарной ячейки кристалла, т. е. менее одного нм ), возможность получения изображения непосредственно под действием света, т. е. практически в реальном масштабе времени (время записи ограничивается длительностью элементарных фотопроцессов и может быть менее 10– 8сек ), изменение в широких

пределах времени хранения записанной информации (от 10– 6сек до нескольких месяцев и даже лет), возможность перезаписи и исправления изображения с помощью теплового или светового воздействия. В зависимости от типа Ф. м. можно получать негативное или позитивное многоцветное изображение под действием излучения в диапазоне от рентгеновского до микроволнового.

Светочувствительность Ф. м. на 4–7 порядков ниже, чем у галогенсеребряных фотоматериалов, поэтому особый интерес представляет применение Ф. м. в лазерных системах, обеспечивающих запись и обработку оптической информации в мощных потоках излучения в реальном масштабе времени.

Помимо использования в традиционных областях фотографии, Ф. м. находят применение в системах отображения динамической информации, скоростной оптической обработки оптических и электрических сигналов, в качестве элементов оперативной памяти ЭВМ (где быстродействие и многократность использования Ф. м. особенно важны), в системах микрофильмирования и микрозаписи, в голографии (где особенно существенно высокое разрешение Ф. м.), при фотомаскировании в цветной фотографии и печати (где с помощью Ф. м. можно создавать корректирующие спектральные или контурные маски в момент экспонирования или печатания), а также в оптоэлектронике , дозиметрии , актинометрии , в оптических затворах, автоматически изменяющих пропускание света в зависимости от уровня освещённости , и много др.

Лит. см. при ст. Фотохромизм .

В. А. Барачевский, Л. А. Картужанский.

Фотохроника

Фотохро'ника, хроника текущей жизни, отражённая в фотографиях, помещаемых в газетах, журналах или на специальных стендах (например, Ф. ТАСС). Обычно к Ф. относят фотографические изображения, не всегда заключающие в себе эстетическое содержание (в отличие от произведений документального фотоискусства ) и наделённые преимущественно историко-познавательной ценностью.

Фотохронометраж

Фотохронометра'ж,см. Хронометраж .

Фотоцинкография

Фотоцинкогра'фия, способ изготовления оригинальных (первичных) печатных форм высокой печати путём фотографического переноса изображения на цинковую пластину (с последующим её травлением). Ф. больше известна под название цинкографии .

Фотоэдс

Фотоэдс, электродвижущая сила, возникающая в полупроводнике при поглощении в нём электромагнитного излучения (фотонов). Появление Ф. (фотовольтаический эффект) обусловлено пространственным разделением генерируемых излучением носителей заряда (фотоносителей). Разделение фотоносителей происходит в процессе их диффузии и дрейфа в электрическом и магнитном полях из-за неравномерной генерации, неоднородности кристалла, воздействия внешнего магнитного поля, одноосного сжатия и др.

Объёмная Ф. в однородном полупроводнике, обусловленная неодинаковой генерацией в нём фотоносителей, называется диффузионной, или фотоэдс Дембера. При неравномерном освещении полупроводника или облучении его сильно поглощающимся (и быстро затухающим в глубине кристалла) излучением концентрация фотоносителей велика вблизи облучаемой грани и мала или равна нулю в затемнённых участках. Фотоносители диффундируют от облучаемой грани в область, где их концентрация меньше, и если подвижности электронов проводимости и дырок неодинаковы, в объёме полупроводника возникает пространственный заряд, а между освещенным и затемнённым участками – фотоэдс Дембера. Величина этой Ф. между двумя точками полупроводника 1 и 2 может быть вычислена по формуле:

,

где k – Больцмана постоянная , е – заряд электрона, Т – температура, mэ и mд – подвижности электронов и дырок, s1 и s2 электропроводность в точках 1 и 2. Фотоэдс Дембера при данной интенсивности освещения тем больше, чем больше разность подвижностей электронов и дырок и чем меньше электропроводность полупроводника в темноте. Излучение, генерирующее в полупроводнике только основные носители заряда, не создаёт фотоэдс Дембера, так как в этом случае эдс в объёме компенсируется равной ей по величине и противоположной по знаку эдс, образующейся на контакте полупроводника с электродом. Фотоэдс Дембера в обычных полупроводниках мала и практического применения не имеет.

Поделиться с друзьями: