Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия (КА)
Шрифт:

Выбор состава катализатора для определённой реакции является очень сложной проблемой, решаемой пока главным образом эмпирическим путём. В СССР предложен и развит ряд теоретических подходов, основанных на корреляции отдельных частных свойств катализаторов с их активностью. Так, мультиплетная теория К. (первые публикации 1929) предполагает промежуточное взаимодействие реагирующих веществ с несколькими атомами на поверхности твёрдых катализаторов и придаёт решающее значение соответствию расстояний между атомами в молекулах реактантов и параметров кристаллической структуры катализатора. В дальнейшем теория была дополнена представлением о необходимости определённого соответствия энергий связей, разрывающихся и образующихся в результате реакции, и энергий связей реактантов с катализатором при промежуточном взаимодействии. Значительное распространение в 50-х гг. получило представление о зависимости каталитической активности твёрдых катализаторов, обладающих полупроводниковыми свойствами, от их электрических характеристик, — так называемая электронная теория К. По этой теории предполагается, что промежуточное взаимодействие реактантов с катализатором осуществляется при участии электронов проводимости твёрдого катализатора и поэтому зависит от его коллективных электронных свойств — расположения энергетических зон и локальных уровней электронов, работы выхода электрона, концентрации носителей тока и др. В гетерогенном К. широко использовалось предположение (выдвинутое в 1939) о существовании на поверхности твёрдых катализаторов особых активных центров, представляющих собой ребра, углы или различные структурные нарушения (дислокации) нормальной кристаллической структуры. Предполагалось также, что при нанесении каталитически активного вещества

на инертный носитель особые каталитические свойства проявляют отдельно расположенные атомы или совокупности небольшого числа атомов — ансамбли.

Появление точных методов определения поверхности катализаторов позволило установить, что активность, отнесённая к единице поверхности (удельная каталитическая активность), определяется химическим составом и очень мало зависит от структурных дислокаций. Удельная каталитическая активность различных граней кристаллов иногда различается в несколько раз. Большое влияние на активность оказывают нарушения химического состава (отклонение от стехиометрии, внедрение примесей, локальные химические образования и т.п.).

В 60-е годы промежуточное химическое взаимодействие в гетерогенном К. рассматривается преимущественно как локальное, определяемое электронной структурой отдельных атомов или ионов каталитически активного компонента на поверхности катализатора с учётом влияния ближайшего окружения. Значительную помощь в развитии этого подхода оказала обнаруженная экспериментально аналогия в действии твёрдых катализаторов, содержащих определённый металл, при гетерогенном К. и растворимых комплексов, компонентом которых является тот же металл, при гомогенном К. в растворах. При этом используются теории кристаллического поля и поля лигандов, ещё ранее успешно применявшиеся в химии комплексных соединений. Для ряда классов катализаторов и каталитических реакций установлены корреляции между каталитической активностью и энергиями связей реактантов с катализатором при промежуточном взаимодействии, облегчающие в отдельных случаях подбор катализаторов.

Первые научные сведения о К. относятся к началу 19 в. В 1806 французские химики Н. Клеман и Ш. Дезорм открыли каталитическое действие окислов азота на окисление сернистого газа в камерном процессе получения серной кислоты, В 1811 русский химик К. С. Кирхгоф открыл, что разбавленные кислоты способны вызывать превращение крахмала в сахар (глюкозу); в 1814 им же было установлено, что эту реакцию может катализировать диастаза из ячменного солода, — так было положено начало изучению биологических катализаторов — ферментов. В 1818 французский химик Л. Тенар установил, что большое число твёрдых тел оказывает ускоряющее действие на разложение растворов перекиси водорода, а английский химик Г. Дэви открыл способность паров спирта и эфира окисляться кислородом на платине. В 1822 нем. химик И. Дёберейнер установил, что водород и кислород соединяются на платине при обычной температуре. За этим последовало открытие и ряда др. примеров резкого положительного действия веществ на скорость или возникновение химических реакций. Это привело к выделению особой группы явлений, названных нем. химиком Э. Мичерлихом контактными (1833) и швед. химиком И. Берцелиусом каталитическими (1835).

В дальнейшем было открыто большое число каталитических реакций, и за последние 50 лет К. стал ведущим методом осуществления химических реакций в промышленности. Применение катализаторов позволяет проводить химические превращения с высокими скоростями при небольших температурах — большинство промышленных каталитических процессов без катализаторов вообще не могло бы быть реализовано. Подбирая катализаторы, можно направлять химические превращение в сторону образования определённого продукта из ряда возможных. Применение стереоспецифичных катализаторов позволяет регулировать и строение конечных продуктов, например полимеров. С помощью К. в начале 20 в. была решена проблема фиксации азота воздуха. Промотированные железные и другие катализаторы позволили преодолеть химическую инертность элементарного азота и осуществить синтез аммиака. Одновременно был разработан каталитический метод получения азотной кислоты путём окисления аммиака на платиновых сетках. На каталитических реакциях основываются современные методы получения водорода из природного газа. Каталитические методы занимают господствующее положение и в технологии нефтепереработки. Сотни миллионов тонн высококачественного моторного топлива производятся с помощью каталитических реакций крекинга, гидрокрекинга, риформинга, циклизации и изомеризации углеводородов нефти. Особенно большую роль играют каталитические методы в осуществлении процессов органического синтеза. В нашей стране впервые в мире было разработано и реализовано производство синтетического каучука, основанное на превращении этилового спирта в дивинил с помощью многокомпонентного окисного катализатора Лебедева. Каталитические методы используются для получения подавляющего большинства продуктов нефтехимического синтеза: растворителей, ароматических углеводородов, мономеров для производства синтетических каучуков, синтетических волокон и др. полимерных материалов. Катализаторы широко используются и для полимеризации.

К. играет ведущую роль в химических превращениях в живой природе. Вся сложная система управления жизненными процессами в организмах основана на каталитических реакциях. Биологические катализаторы, называемые ферментами или энзимами, представляют собой вещества белковой природы с химически активными группами, часто включающими в свой состав атомы переходных элементов. По некоторым свойствам ферменты превосходят промышленные катализаторы. В СССР и за рубежом широко ведутся исследования новых типов сложных синтетических катализаторов — комплексных соединений, органических полупроводников, полимеров, характеризующихся более простым составом по сравнению с ферментами, но моделирующих в известной степени их действие. Науке о К. принадлежит существенная роль как в прогрессе химической промышленности, так и в раскрытии важнейших биологических закономерностей.

Лит.: Баландин А. А., Мультиплетная теория катализа, ч, 1—2, М., 1963—64; Волькенштейн Ф. Ф., Электронная теория катализа на полупроводниках, М., 1960: Catalysis, ed. P. Н. Ernmett, v. 1—7, N. Y., 1954—60; Ашмор П.., Катализ и ингибирование химических реакций, пер. с англ., М., 1966; Томас Дж., Томас У., Гетерогенный катализ, пер. с англ.. М., 1969; Киперман С. Л., Введение в кинетику гетерогенных каталитических реакций, М., 1964; Боресков Г. К., Катализ в производстве серной кислоты, М. — Л., 1954; Крылов О. В., Катализ неметаллами, Л., 1967; Основы предвидения каталитического действия. Труды IV Международного конгресса по катализу, т. 1—2, М., 1970.

Г. К. Боресков.

Изменение энергии реакционной системы вдоль пути реакции. А — исходное состояние; состояния, соответствующие образованию: В — промежуточного соединения, С — конечных продуктов, X1 , X'2 , Х"2 , X3 — активных комплексов.

Катализаторы

Катализа'торы, вещества, изменяющие скорость химических реакций посредством многократного промежуточного химического взаимодействия с участниками реакций и не входящие в состав конечных продуктов (см. Катализ ). К. повсеместно распространены в живой природе и широко используются в промышленности. Более 70% всех химических превращений веществ, а среди новых производств более 90% осуществляется с помощью К. Различные К., выпускаемые промышленностью, классифицируются по типу катализируемых реакций (кислотно-основные, окислительно-восстановительные); по группам каталитических процессов или особенностям их аппаратурно-технологического оформления (например, К. синтеза аммиака, крекинга нефтепродуктов, К. для использования в псевдоожиженном слое); по природе активного вещества (металлические, окисные, сульфидные, металлоорганические, комплексные и т.д.); по методам приготовления. Некоторые виды К., используемых в промышленности, приведены в табл. При помощи белковых К. — ферментов — осуществляется обмен веществ у всех живых организмов.

Некоторые промышленные катализаторы

Процессы и их особенности Катализаторы и их некоторые характеристики
Крекинг нефтепродуктов
Синтетические аморфные и кристаллические (цеолиты) алюмосиликаты, в том числе с добавками окислов редкоземельных элементов.
системы с плотным движущимся слоем Катализатор в форме шариков диаметром 3—6 мм
системы с псевдоожиженным слоем Микросферический катализатор, размер частиц 0,08—0,2 мм
Риформинг — получение высокооктановых бензинов и ароматических углеводородов Платина (0,2—0,6%) на окиси алюминия с добавками хлора, фтора, редких металлов; цилиндрические гранулы или шарики размером 2—3 мм
Конверсия природного газа и др. углеводо- родов с водяным паром для получения водорода Никель (5—25%) на термостойком носителе (обычно на основе окиси алюминия); цилиндри- ческие гранулы, кольца и шары размером 10—20 мм
Получение водорода из окиси углерода и водяного пара Окисные железохромовые катализаторы (6—9% Cr2 O3 ); рабочая температура 350—500 °C, относительно устойчивы к действию сернистых соединений. Смеси окислов меди, цинка, алю- миния, железа и др.; рабочая температура 200—250 °С, остаточное содержание окиси угле- рода по сравнению с железохромовыми К. снижается с 1,5—2,5 до 0,2—0,3%; легко отрав- ляются серой и требуют тщательной очистки газа
Синтез аммиака Металлическое железо, промотированное окислами алюминия, кальция, калия и др.
Окисление двуокиси серы в производстве серной кислоты Ванадиевые катализаторы на носителях (обычно силикатных), активное вещество имеет состав V2 O5 mMe3 O. nSO3 (Ме—щелочной металл); цилиндрические и сферические гранулы, таблетки, кольца размером 5—12 мм
Окисление аммиака в производстве азотной кислоты Металлическая платина (сетка), сплавы платины с некоторыми металлами, реже катализато- ры на основе окислов (кобальта, висмута, железа)
Окисление этилена в окись этилена Серебро, пористое металлическое или на инертных носителях
Окисление нафталина во фталевый ангид- рид Пятиокись ванадия, плавленая или на носителях (промотированная сульфатами щелочных металлов)
Синтез метилового спирта из окиси угле- рода и водорода Окисные цинк-хромовые катализаторы: рабочая температура 375—400 °С, давление 20—30 Мн /м2 (200—300 кгс/см2 ). Катализаторы, содержащие медь; рабочая температура 250°C, давление 5 Мн /м м2 (50 кгс/см2 )
Синтез этилового спирта методом прямой гидратации этилена Фосфорная кислота на кремнеземистом носителе
Синтез ацетальдегида из ацетилена
гомогенный процесс Кучерова Водный раствор сульфата ртути
гетерогенный процесс Фосфаты кальция и кадмия
Синтез ацетальдегида из этилена, гомо- генный процесс Водный раствор хлоридов палладия и меди
Дегидрирование бутана, изобутана, изо- пентана до олефинов и диолефинов (про- изводство мономеров для синтетического каучука) Окисные алюмохромовые и железохромовые, кальций-никель-фосфатные и др. катализа- торы; часто используют в псевдоожиженном слое
Гидрирование бензола в циклогексан (фе- нола в циклогексанол) в производстве капролактама Никель (35—50%) на носителях. Для коксохимического бензола — сульфиды никеля, ко- бальта, молибдена, вольфрама; сульфидные катализаторы не отравляются серусодержащими соединениями
Гидрирование жиров
суспендированный катализатор Никелевые и никель-медные катализаторы в виде высокодисперсного порошка (черни) или на носителе
стационарный слой катализатора Никель на носителях, сплавные или спечённые никелевые катализаторы
Синтез винилхлорида из ацетилена Хлорная ртуть (сулема) на активированном угле

Важнейшим свойством К. является специфичность действия: каждая химическая реакция или группа однородных реакций может ускоряться только вполне определёнными К. Наиболее ярко специфичность К. проявляется в том, что они могут определять направление реакции— из одних и тех же исходных веществ в зависимости от вида К. образуются различные продукты. Например, из смеси окиси углерода и водорода в присутствии разных К. можно получить метан, смесь жидких углеводородов, высокомолекулярные твёрдые углеводороды, смеси кислородсодержащих соединений различного состава, метиловый или изобутиловый спирты и др. продукты. Мерой специфичности К. служит избирательность (селективность); её оценивают отношением скорости целевой реакции к общей скорости превращения исходных веществ в присутствии данного К. Другим важным показателем каталитических свойств веществ является каталитическая активность, выражаемая в виде разности скоростей одной и той же реакции, измеренных при прочих равных условиях в присутствии и в отсутствие К. Каталитическая активность относят к единице массы, объёма, концентрации или поверхности К. Активность, отнесённую к 1 м2 поверхности К., называют удельной каталитической активностью. Если без К. реакция практически не идёт, за меру активности принимают скорость реакции в определённых условиях, отнесённую к единице количества данного К. Из-за специфичности К. сравнивать каталитическую активность веществ можно только по отношению к одной и той же реакции. В прикладных исследованиях активность К. часто выражают в виде производительности — количества полученного продукта (или прореагировавшего вещества) в единицу времени на единицу объёма К., а избирательность — в виде выхода целевого продукта по отношению к теоретически возможному.

Наряду с активностью и избирательностью другой эксплуатационной характеристикой К. является стабильность, которая часто определяет целесообразность промышленного использования К. в том или ином процессе. Промышленные К. с течением времени изменяются, снижаются их активность и избирательность в результате различных побочных процессов, например вследствие взаимодействия с примесями, поступающими с сырьём (так называемое отравление, см. Каталитические яды ), спекания и перекристаллизации вещества К. под воздействием повышенной температуры или реакционной среды (старение), отложения смолистых веществ и кокса на поверхности К., адсорбционного снижения прочности (эффект Ребиндера). Поэтому по прошествии определенного времени К., если это возможно, подвергают специальной обработке (регенерации) или заменяют свежими. Срок службы промышленных К. при непрерывных процессах в аппаратах с неподвижным слоем К. составляет в среднем 6—36 мес. Самые стабильные К. непрерывно работают более 10 лет (например, ванадиевые К. для окисления CO2 ). К., срок службы которых менее 1—2 мес., в реакторах с неподвижным слоем, как правило, не применяются. Для таких К. и К., работающих в течение коротких циклов с частой регенерацией (например, алюмосиликатные К. крекинга, К. дегидрирования углеводородов), иногда оказывается эффективным применение реакторов с подвижным, в частности псевдоожиженным, слоем К.

Поделиться с друзьями: