Чтение онлайн

ЖАНРЫ

Большая Советская Энциклопедия (СУ)
Шрифт:

Сумкино

Су'мкино, посёлок городского типа в Тюменской области РСФСР, подчинён Тобольскому горсовету. Расположен на левобережье Иртыша, в 18 км от Тобольска.

Сумма

Су'мма (от лат. summa — итог, общее количество), результат сложения величин (чисел, функций, векторов, матриц и т. д.). Общими для всех случаев являются свойства перестановочности, сочетательности, а также распределительности по отношению к умножению (если для рассматриваемых величин умножение определено), то есть выполнение соотношений:

а + b = b + a, a + (b + с ) = (a + b ) + c, (a + b ) с = ac + bc, с (a + b ) = ca + cb.

В теории множеств

С. (или объединением) множеств называется множество, элементами которого являются все элементы слагаемых множеств, взятые без повторений.

Суммарный процесс

Сумма'рный проце'сс (производство), упрощённый порядок рассмотрения уголовных дел. В капиталистических странах характерная черта С. п. — отказ от соблюдения гарантий прав личности и разрешение дел по усмотрению судейских чиновников. Как правило, дела рассматриваются единолично судьями низших звеньев; без участия присяжных заседателей, без предварит. расследования дела; обычно обвинительный приговор основан на материалах полиции.

С. п. как процессуальная форма известна и уголовно-процессуальному законодательству некоторых социалистических стран, однако в этих странах процессуальные упрощения допускаются лишь по делам о менее серьёзных преступлениях, за которые по закону не может быть назначено тяжкое наказание. Особое значение при С. п. уделяется полному обеспечению процессуальных гарантий и охране законных интересов участников процесса. В советском процессуальном законе предусмотрен упрощённый порядок производства по делам о мелком хулиганстве .

Сумматор

Сумма'тор (от позднелат. surnmo — складываю, от лат. summa — сумма, итог), основной узел арифметического устройства ЦВМ, посредством которого осуществляется операция сложения чисел. При поразрядном сложении десятичных чисел (например, 157, 68 и 9) складывают сначала цифры разрядов единиц всех слагаемых (7 + 8 + 9); результат, если это однозначное число, записывают в разряд единиц итоговой суммы, если же результат — двузначное число (как в данном примере, 7 + 8 + 9 = 24), то в итог записывают только единицы (4), а десятки (2) переносят (добавляют) в разряд десятков слагаемых (5 + 6 + 2). Затем операция сложения повторяется, но уже над десятками, после этого — над сотнями и т. д., до получения итоговой суммы (234). При поразрядном сложении чисел, представленных в двоичном коде, также складываются цифры слагаемых в данном разряде и к полученному результату прибавляется единица переноса (если она имеется) из младшего разряда. В результате формируются (по правилам сложения в двоичной системе счисления) значения суммы в данном разряде и переноса в старший разряд.

Многоразрядный С. для поразрядного сложения обычно состоит из соответствующим образом соединённых одноразрядных суммирующих устройств. Простейшее из них, часто называют полусумматором (ПС), в случае сложения двоичных чисел может быть собрано, например, из 4 логических элементов (рис. 1 ): «и» (2 элемента типа совпадений схемы ), «или» (вентиль электрический ), «не» (инвертор ). Схема ПС может видоизменяться в зависимости от используемой системы логических элементов. ПС производит суммирование двух чисел х и у с образованием цифр суммы S и переноса с (см. табл. 1). Однако для реализации многоразрядных С. необходимо иметь суммирующее устройство на 3 входа (для суммирования трёх чисел — слагаемых xi и yi и переноса Ci-1 из младшего разряда), на выходах которого образуется сумма Si и перенос Ci+1 в старший разряд. Работа такого С. отражена в табл. 2, а пример схемы дан на рис. 2.

Таблица 1

xy S c
0 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1

Таблица 2

xiyici-1Sici+1
0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 1 0 0 0 1 0 1 1 1

Существует множество вариантов схемной и элементной реализации С., различающихся системой счисления (двоичные, десятичные, двоично-десятичные и др.), числом входов (2-входовые и 3-входовые), способом обработки многоразрядных чисел (последовательные, параллельные, смешанные), способом организации процесса суммирования (комбинационные, накапливающие), способом организации цепей переноса (с последовательным, сквозным, групповым и одновременным переносом). Выбор варианта С. зависит в основном от того, какая система элементов используется в данной ЦВМ, от требуемого быстродействия и экономичности. Быстродействие С.— один из его важнейших параметров. Поэтому в ЦВМ 3-го поколения для ускорения арифметических операций применяют не одноразрядные С., а групповые, вычисляющие значения суммы и переноса сразу для группы разрядов.

Кроме основной операции — суммирования, большинство С. используется для операций умножения и деления, а также для логических операций (логическое

умножение и сложение и др.).

Лит.: Карцев М. А., Арифметика цифровых машин, М., 1969; Каган Б. М., Каневский М. М., Цифровые вычислительные машины и системы, М., 1973; Преснухин Л. Н., Нестеров П. В., Цифровые вычислительные машины, М., 1974.

Л. Н. Столяров.

Рис. 2. Схема сумматора на 3 входа из двух полусумматоров (ПС) и элемента «или»; xi , yi — слагаемые; сi-1 — перенос из младшего разряда; Si — сумма; Ci+1 — перенос в старший разряд.

Рис. 1. Схема полусумматора: х, у — слагаемые; 5 — сумма; с — перенос в старший разряд.

Суммация

Сумма'ция (от позднелат. summatio — сложение) в физиологии, слияние эффектов ряда стимулов, быстро следующих друг за другом (временная С.) или одновременных (пространственная С.), возникающих в возбудимых образованиях (рецепторах, нервных клетках, мышцах). Впервые С. описал И. М. Сеченов (1868), наблюдавший при определённых условиях ритмического раздражения задержку появления и последующее усиление рефлекторных реакций. Временная С. происходит при интервалах между стимулами, ограниченных периодом подпороговых или следовых (см. Следовые реакции ) сдвигов мембранного потенциала в сторону деполяризации (при развитии возбуждения ) и гиперполяризации (при развитии торможения ). Временная С. обеспечивает необходимую длительность реакций. Она может поддерживаться кольцевой связью нейронов. Пространственная С., непрерывно меняющаяся, проявляется в одновременном возбуждении или торможении как многих нейронов различных участков мозга, так и многочисленных синапсов на одном нейроне. Способствуя усилению отдельных реакций, С. вместе с тем играет важную роль в осуществлении координированных реакций организма. В мышце пространственная С. вызывает усиление сокращений, связанное с увеличением количества возбуждённых двигательных единиц (то есть групп волокон, иннервируемых одним нейроном), а временная С. ведёт к образованию тетануса путём слияния следующих друг за другом одиночных сокращений.

А. Н. Кабанов.

Суммирование

Сумми'рование расходящихся рядов и интегралов, построение обобщённой суммы ряда (соответственно значения интеграла ), не имеющего обычной суммы (соответственно значения). Расходящиеся ряды могут получаться при перемножении условно сходящихся рядов, при разложении функций в ряд Фурье, при дифференцировании и интегрировании функциональных рядов и т. д. Часто встречаются расходящиеся ряды и интегралы в теории электромагнитного поля и др. вопросах современной физики. Во многих случаях расходящиеся ряды и интегралы можно просуммировать, то есть найти для них сумму (значение) в обобщённом смысле, обладающую некоторыми из основных свойств обычной суммы (значения) сходящегося ряда (интеграла). Обычно требуется, чтобы из того, что ряд

 суммируется к S, а ряд
 суммируется к Т, следовало, что ряд
суммируется к lS + lT, а ряд
 суммируется к Sао . Кроме того, чаще всего рассматриваются регулярные методы С., то есть методы, суммирующие каждый сходящийся ряд к его обычной сумме. В большинстве методов С. расходящийся ряд рассматривается в известном смысле как предел сходящегося ряда. А именно, каждый член ряда

(1)

умножается на некоторый множитель ln (t) так, чтобы после умножения получился сходящийся ряд

 (2)

с суммой d(t). При этом множители ln (t) выбираются так, чтобы при каждом фиксированном n предел ln (t) при некотором непрерывном или дискретном изменении параметра t равнялся 1. Тогда члены ряда (2) стремятся к соответствующим членам ряда (1). Если при этом d(t) имеет предел, то его называют обобщённой суммой данного ряда, соответствующей данному выбору множителей (данному методу С.). Например, если положить ln (t) = 1 При n lb t и ln (t) = 0 при n > t и брать t ® yen, то получится обычное понятие суммы ряда; при ln (t ) = tn для t < 1 и t ® 1 получается метод Абеля — Пуассона. Часто указывается не результат умножения членов ряда на ln (t), а соответствующие изменения частичных сумм ряда. Например, в методе средних арифметических Чезаро полагают

Поделиться с друзьями: