Большая Советская Энциклопедия (ВА)
Шрифт:
Из разрозненных задач подобного рода постепенно в 18 в. начало формироваться В. и. Но и после оформления В. и. в самостоятельную дисциплину она продолжала оставаться связанной с различными проблемами механики и физики. На протяжении 2-й половины 18 в. и всего 19 в. делались интенсивные попытки построить здание механики, опираясь на некоторые общие вариационные принципы (см. Вариационные принципы механики ). Со 2-й половины 19 в. начинают разрабатываться различные вариационные принципы в механике сплошных сред, затем позднее в квантовой механике, электродинамике и т.д. Возникают вариационные принципы и в средах с диссипацией энергии. Исследования во всех подобных областях продолжают служить базой формирования новых задач В. и. и областью
Прямые методы . В. и. как самостоятельная научная дисциплина сформировалась в 18 в., главным образом благодаря работам Л. Эйлера .
Простейшей задачей В. и. называют задачу отыскания функции x (t ), доставляющей экстремум функционалу
где F — непрерывная и дифференцируемая функция своих аргументов. При этом функция x (t ) должна удовлетворять следующим условиям:
а) она должна быть кусочно дифференцируемой,
б) при t = to и t = T она должна принимать значения
х (to ) = х , х (Т) = хт . (2)
Обе задачи, рассмотренные в начале статьи, являются частными случаями простейшей задачи В. и.
Первые вариационные задачи были задачами механики. Они были поставлены в 18 в. и, следуя традициям того времени, первый вопрос, на который надо было ответить, был вопрос о способе фактического отыскания функции x (t ), реализующей минимум функционала (1).
Эйлер создал численный метод решения задач В. и., который получил название Эйлера метода ломаных . Этот метод был первым среди большого класса, так называемых, прямых методов ; все они основаны на редукции задачи отыскания экстремума функционала к задаче отыскания экстремума функции многих переменных. Поскольку для получения решения с высокой точностью задачу приходится сводить к отысканию экстремума функции с большим числом переменных, она становится весьма сложной для ручного счёта. Поэтому долгое время прямые методы были вне основного русла, по которому направлялись усилия математиков, занимавшихся В. и.
В 20 в. интерес к прямым методам значительно усилился. Прежде всего были предложены новые способы редукции к задаче об экстремуме функции конечного числа переменных. Поясним эти идеи на простом примере. Рассмотрим снова задачу отыскания минимума функционала (1) при дополнит. условии
x (to ) = x (T) = 0 (3)
и будем разыскивать решение задачи в форме
где jn (t) — некоторая система функций, удовлетворяющих условиям типа (3). Тогда функционал J (x) становится функцией коэффициентов ai :
J = J (ai ,..., aN ),
и задача сводится к отысканию минимума этой функции N переменных. При известных условиях, наложенных на систему функций {jn } , решение этой задачи стремится при N ® yen к решению задачи (1) (см. Ритца и Галёркина методы ).
Другая причина усиления интереса к прямым методам — это систематическое изучение конечноразностных методов в задачах
математической физики, начавшееся с 20-х гг. 20 в. Применение ЭВМ превращает постепенно прямые методы в основной инструмент решения вариационных задач.Метод вариаций. Второе направление исследований — это изучение необходимых и достаточных условий, которым должна удовлетворять функция x (t ), реализующая экстремум функционала J (x). Его возникновение также связано с именем Эйлера. Предположим, что тем или иным способом построена функция x (t ). Как проверить, является ли эта функция решением задачи? Первый вариант ответа на этот вопрос был дан Эйлером в 1744. В приведённой ниже формулировке этого ответа употребляется введённое в 60-х гг. 18 в. Ж. Лагранжем понятие вариации (отсюда название — В. и.), являющееся обобщением понятия дифференциала на случай функционалов.
Пусть x (t ) — функция, удовлетворяющая условию (2), a h (t) — произвольная гладкая функция, удовлетворяющая условию h (to ) = h (T) = 0. Тогда величина
J (x + eh) = J*(e),
где e — произвольное действительное число будет функцией e . Вариацией dJ функционала J называют производную
(dJ*/de)e = 0.
Для простейшей задачи В. и.
Разлагая полученное выражение в ряд по степеням e, получим
где о (e) — члены более высокого порядка. Так как h (to ) = h (T ) = 0, то, проведя интегрирование по частям во втором интеграле, найдём
Пусть теперь x (t ) реализует экстремум. Тогда функция J*(e) имеет экстремум при e = 0. Поэтому величина dJ должна обратиться в нуль. Отсюда следует: для того чтобы функция x (t ) доставляла экстремум функционалу (1), необходимо, чтобы она удовлетворяла уравнению
называемому уравнением Эйлера.
Это — дифференциальное уравнение 2-го порядка относительно функции x (t ). Необходимое условие dJ = 0 может быть применено в ряде случаев для эффективного отыскания решения вариационной задачи, поскольку функция x (t ) необходимо должна быть решением краевой задачи x (to ) = xo , x (T ) = xT для уравнения (4). Если найдено это решение и оно единственно, то найдено тем самым и решение исходной вариационной задачи. Если краевая задача допускает несколько решений, то достаточно вычислить значение функционала для каждого из решений краевой задачи и выбрать из них то, которому отвечает наименьшее значение J (x ). Однако указанный путь обладает одним существенным недостатком: не существует универсальных способов решения краевых задач для обыкновенных (нелинейных) дифференциальных уравнений.