Чтение онлайн

ЖАНРЫ

Брайан Грин. Ткань космоса: Пространство, время и структура реальности

Грин Брайан

Шрифт:

Следующий этап, в соответствии с Беннетом и сотрудниками, не связан с прямым измерением Фотона А – фотона, который я надеюсь телепортировать, – поскольку это приведет к слишком резкому вмешательству. Вместо этого я должен измерить общее свойство Фотона А и запутанного Фотона В. Например, квантовая теория позволяет мне измерить, имеют ли Фотоны А и В одинаковый спин относительно вертикальной оси без измерения их индивидуальных спинов. Аналогично, квантовая теория позволяет мне измерить, имеют ли Фотоны А и В одинаковый спин относительно горизонтальной оси без измерения их индивидуальных спинов. В результате такого объединенного измерения я не узнаю спина Фотона А, но я узнаю, как спин Фотона А связан со спином Фотона В. И это важная информация.

Удаленный фотон С запутан с фотоном В, так что если я знаю, как Фотон А связан с Фотоном В, я могу вывести, как Фотон А связан с Фотоном С. Если я теперь сообщу по телефону эту информацию Николасу, передав ему, как состояние спина Фотона А связано с состоянием спина Фотона С, он сможет определить, что надо сделать с Фотоном С, чтобы его квантовое состояние стало соответствовать состоянию Фотона А. Как только он проведет необходимые манипуляции, квантовое состояние фотона, находящегося в его владении, будет идентичным состоянию Фотона А, а это все, что нам необходимо, чтобы объявить,

что Фотон А был успешно телепортирован. В простейшем случае, например, если мое измерение обнаруживает, что спин Фотона В идентичен спину Фотона А, мы придем к заключению, что спин Фотона С также идентичен спину Фотона А и без дальнейших хлопот телепортация будет завершена. Фотон С будет в том же самом квантовом состоянии, как и Фотон А, как и хотелось.

Ну, почти. Имеется грубая идея, но для объяснения квантовой телепортации в виде управляемых этапов, я до настоящего момента оставлял без внимания абсолютно ключевой элемент истории, который я сейчас восполню. Когда я провожу совместное измерение Фотонов А и В, я на самом деле узнаю, как спин Фотона А связан со спином Фотона В. Но, как и во всех наблюдениях, само измерение влияет на фотоны. Следовательно, я не узнаю, как спин Фотона А был связан со спином Фотона В до измерения. Вместо этого я узнаю, как они связаны после того, как состояния обоих фотонов были нарушены актом измерения. Так что, с первого взгляда, мы, кажется, стоим перед лицом той же самой квантовой преграды для копирования Фотона А, которую я описал выше: перед неизбежным нарушением состояния, вызванным процессом измерения. Именно здесь Фотон С приходит на помощь. Поскольку Фотоны В и С запутаны, нарушение, которое я вызвал у Фотона В в Нью-Йорке, будет также отражено в состоянии Фотона С в Лондоне. Это удивительная природа квантового запутывания, как мы детально обдумывали в Главе 4. Фактически, Беннет и его соратники показали математически, что через запутывание с Фотоном В нарушение, вызванное моим измерением, отпечатывается на удаленном Фотоне С.

И это фантастически интересно. Через мое измерение мы можем узнать, как спин Фотона А связан со спином Фотона В, но с раздражающей проблемой, что состояния обоих фотонов нарушились моим вмешательством. Через запутывание, однако, Фотон С связывается с моим измерением, – даже если он удален на тысячи миль, – и это позволяет нам обособить влияние нарушения и отсюда получить доступ к информации, обычно теряющейся в процессе измерения. Если я теперь позвоню Николасу с результатом моего измерения, он будет знать, как спины Фотонов А и В связаны после нарушения, и через Фотон С он получит доступ к влиянию самого нарушения. Это позволяет Николасу использовать Фотон С, чтобы, грубо говоря, вычесть нарушение, вызванное моим измерением, и таким образом, обойти препятствие к дублированию Фотона А. Фактически, как детально показали Беннет и сотрудники, через, по большей части, простые манипуляции со спином Фотона С (основанные на моем телефонном звонке, информирующем Николаса, каково состояние спина Фотона А относительно состояния спина Фотона В), Николас обеспечит, что Фотон С, каким бы ни был его спин, в точности скопирует квантовое состояние Фотона А перед моим измерением. Более того, хотя спин только одна из характеристик фотона, другие свойства квантового состояния Фотона А (такие как вероятность, что он имеет ту или иную энергию) могут быть воспроизведены аналогично. Таким образом, используя эту процедуру, мы можем телепортировать Фотон А из Нью-Йорка в Лондон. [3]

3. Для читателя, который в некоторой степени привычен к формализму квантовой механики, здесь приводятся основные этапы в квантовой телепортации. Представьте, что начальное состояние фотона, который я имею в Нью-Йорке, задано |>1 = |0> + |1>, где |0> и |1> есть два состояния поляризации фотона, и мы допускаем определенные, нормализованные, но произвольные величины коэффициентов. Моя цель заключается в передаче Николасу достаточной информации, чтобы он мог произвести фотон в Лондоне в точно том же квантовом состоянии. Чтобы сделать это, Николас и я сначала обзаводимся парой запутанных фотонов в состоянии, скажем, |>23 = (l/2)|0203> – (l/2)|1213> Начальное состояние трехфотонной системы, таким образом, есть |>123 = (/2)[2] + (/2)[3]. Когда я провожу измерение состояния Белла над фотонами 1 и 2, я проектирую эту часть системы на одно из четырех состояний: |>± = (1/2)[4] и |>± = (1/2)[5]. Теперь, если мы перевыразим начальное состояние, используя этот базис собственных состояний для частиц 1 и 2, мы найдем: |>123 = 1/2 [6]. Таким образом, после проведения моего измерения я "сколлапсирую" систему в одно из этих четырех слагаемых. Когда я передам Николасу (традиционным образом), какое слагаемое я нашел, он узнает, что надо сделать с фотоном 3, чтобы воспроизвести оригинальное состояние фотона 1. Например, если я нахожу, что мое измерение дает состояние |>, тогда Николас ничего не должен делать с фотоном 3, поскольку, как раньше, он уже находится в оригинальном состоянии фотона 1. Если я найду любой другой результат, Николас проделает подходящее вращение (определяемое, как вы можете видеть, тем, какой результат я найду), чтобы перевести фотон 3 в желаемое состояние.

Как вы можете видеть, квантовая телепортация содержит два этапа, каждый из которых передает решающую и взаимно дополняющую информацию. Первый, мы предпринимаем совместное измерение на фотоне, который мы хотим телепортировать, вместе с одним из членов запутанной пары фотонов. Нарушение, связанное с измерением, отпечатывается на удаленном партнере из запутанной пары через причуды квантовой нелокальности. Этим заканчивается Этап 1, очевидно, квантовая часть процесса телепортации. На Этапе 2 результат самого измерения передается в удаленное место приема более стандартным способом (телефон, факс, электронная почта ...), что может быть названо классической частью процесса телепортации. В комбинации Этап 1 и Этап 2 позволяют воспроизвести точное квантовое состояние фотона, который мы хотим телепортировать, путем прямой операции (такой как поворот на определенный угол относительно особой оси) на удаленном члене запутанной пары.

Отметим также пару ключевых свойств квантовой телепортации. Поскольку оригинальное

квантовое состояние Фотона А было нарушено моим измерением, Фотон С в Лондоне теперь является единственным в этом оригинальном состоянии. Нет двух копий оригинального Фотона А, так что вместо того, чтобы называть это квантовым факсом, на самом деле более точно называть это квантовой телепортацией. [4] Более того, даже если мы телепортируем фотон А из Нью-Йорка в Лондон, – даже если фотон в Лондоне станет неотличим от исходного фотона, который мы имели в Нью-Йорке, – мы не узнаем квантового состояния Фотона А. Фотон в Лондоне имеет точно такую же вероятность ориентации спина в том или ином направлении, какую Фотон А имел перед моим вмешательством, но мы не знаем, что это была за вероятность. Фактически, в этом фокус, лежащий в основе квантовой телепортации. Нарушение, вызванное измерением, не дает нам определить квантовое состояние Фотона А, но в описанном подходе мы не нуждаемся в знании точного квантового состояния фотона, чтобы телепортировать его. Мы нуждаемся в знании только одного аспекта его квантового состояния – что мы и узнали из совместного измерения с Фотоном В.

4. Фактически, склонный к математике читатель заметит, что не трудно доказать так называемую теорему об отсутствии квантового клонирования. Представьте, что мы имеем унитарный оператор клонирования U, который берет любое данное состояние на входе и производит две его копии на выходе (U отображает |> –> |>|> для любого исходного состояния |>). Заметим, что U, действуя на состояние, подобное (|> + |>), дает (|>|> + |>|>), которое не есть двойная копия оригинального состояния (|> + |>)(|> + |>), а потому не существует такого оператора U, чтобы преуспеть в квантовом клонировании. (Это впервые было показано Вутерсом и Зуреком в начале 1980х).

Квантовое запутывание с удаленным Фотоном С дополняет остальное.

Осуществление этой стратегии квантовой телепортации было немалым подвигом. В ранние 1990е создание запутанной пары фотонов было стандартной процедурой, но проведение совместного измерения двух фотонов (совместного измерения на Фотонах А и В, описанное выше, технически называющееся измерением состояния Белла) никогда не удавалось. Достижение обеих групп Зейлингера и Де Мартини было в изобретении хитроумной экспериментальной техники для совместного измерения и в осуществлении его в лаборатории. [5] К 1997 они достигли этой цели, став первыми группами, добившимися телепортации отдельной частицы.

5. Многие исследователи включали в разработку как теорию, так и экспериментальное осуществление квантовой телепортации. В добавление к таким, обсужденным в тексте работам, чтобы назвать несколько, важную часть в римских экспериментах сыграл труд Санду Попеску во время его работы в Кембриджском Университете, а группа Джеффри Кимбла в Калифирнийском Технологическом Институте впервые провела телепортацию непрерывных свойств квантового состояния.

Практическая телепортация

Поскольку вы, и я, и ДеЛорен и все другое состоит из многих частиц, естественный следующий шаг заключается в том, чтобы представить применение квантовой телепортации к таким большим коллективам частиц, позволив нам "излучить" макроскопический объект из одного места в другое. Но прыжок от телепортации одной частицы к телепортации макроскопического собрания частиц ставит в тупик и находится чрезвычайно далеко за пределами того, что исследователи могут сегодня совершить и что многие лидеры в этой области представляют достижимым даже в отдаленном будущем. Но на потеху, как фантастически мечтает Зейлингер, мы можем представить, как однажды достичь этого.

Представим, что я хочу телепортировать ДеЛорен из Нью-Йорка в Лондон. Вместо того, чтобы обеспечить Николаса и меня, каждого одним участником запутанной пары фотонов (что нам было нужно для телепортации отдельного фотона), каждый из нас должен иметь камеру с частицами, содержащую достаточно фотонов, нейтронов, электронов и так далее, чтобы построить ДеЛорен, причем все частицы в моей камере должны быть квантово запутаны со всеми ими в камере Николаса (см. Рис. 15.1). Мне также нужен прибор, который измеряет совместные свойства всех частиц, составляющих мой ДеЛорен, с теми частицами, которые собраны в моей камере (аналог измерения совместных свойств Фотонов А и В). Через запутывание частиц в моей камере влияние совместных измерений, которые я провожу в Нью-Йорке, будет отпечатано на частицах камеры Николаса в Лондоне (аналоге состояния Фотона С, отражающего совместное измерение А и В). Если я звоню Николасу и сообщаю результаты моих измерений (это будет дорогостоящий звонок, так как я передам Николасу около 1030 результатов), эти данные будут инструктировать его о том, как манипулировать частицами в его камере (почти как мой более ранний телефонный звонок проинструктировал его, как манипулировать Фотоном С). Когда он закончит, каждая частица в его камере будет в точности в том квантовом состоянии, как и каждая соответствующая частица в ДеЛорене (до того, как он подвергся любым измерениям), так что, как и в нашем предыдущем обсуждении, Николас теперь будет иметь ДеЛорен.* Его телепортация из Нью-Йорка в Лондон будет завершена.

(*) "Для коллектива частиц – в отличие от индивидуальной частицы – квантовое состояние также кодирует взаимоотношения каждой частицы в коллективе с каждой другой. Так что для точно воспроизведенного квантового состояния частиц, составляющих ДеЛорен, мы подразумеваем, что все они находятся в том же отношении к каждой другой, как и в оригинале; единственное отличие, которое они проявляют, это что их общее положение будет сдвинуто из Нью-Йорка в Лондон."

Рис 15.1 Фантастический подход к телепортации воображает наличие двух удаленных друг от друга камер с квантово запутанными частицами и предполагает проведение подходящих совместных измерений частиц, составляющих объект, который должен быть телепортирован, с частицами в одной из камер. Результат этого измерения должен затем обеспечить необходимую информацию, чтобы произвести действия с частицами во второй камере для воспроизведения объекта и завершения телепортации.

Поделиться с друзьями: