Брайан Грин. Ткань космоса: Пространство, время и структура реальности
Шрифт:
Этот результат безмерно порадовал бы Маха. Хотя он не мог иметь подобное описание в терминах "вращающегося пространства", – поскольку эта фраза описывает пространство-время как нечто, – он нашел бы его экстремально удовлетворяющим тому, что относительное вращательное движение между сферой и ведром вызывает изменения в форме воды. Фактически, для капсулы, которая содержит достаточно массы (в количестве на одном уровне с массой, содержащейся во всей вселенной), расчеты показывают, что не имеет никакого значения, считаете ли вы, что полая сфера вращается вокруг ведра или ведро вращается внутри полой сферы. Точно так же, как Мах отстаивал, что имеет значение только относительное движение между ними двумя. А поскольку расчеты, на которые я сослался, не используют ничего, кроме ОТО, это является явным примером несомненных маховских свойств теории Эйнштейна. (Тем не менее, в то время как стандартная аргументация Маха требовала, чтобы вода оставалась плоской, если ведро вращалось в бесконечной, пустой вселенной, ОТО с этим не согласна. Результаты Пфистера и Брауна показали, что достаточно массивная вращающаяся сфера в состоянии полностью блокировать обычное воздействие пространства, которое лежит вне самой сферы).
В 1960 Леонард Шифф из Стэнфордского Университета и Джордж Пью из Департамента обороны США независимо предположили, что предсказание
Сорока годами разработок и примерно сотней докторских диссертаций позже ко Стэнфорда, руководимая Фрэнсисом Эвериттом и финансируемая НАСА, была готова запустить эксперимент. В течение следующих нескольких лет их спутник (Gravity Probe B – Гравитационный зонд В), плавающий в пространстве на высоте 400 миль и снабженный четырьмя самыми стабильными из когда либо построенных гироскопов, будет пытаться измерить системное увлечение, вызванное земным вращением. Если эксперимент будет успешным, это будет одно из самых точных из когда-либо достигнутых подтверждений ОТО, и это обеспечит первое прямое доказательство эффекта Маха. [2] Не менее возбуждающей является возможность, что эксперимент обнаружит отклонения от предсказаний ОТО. Такая малая трещина в фундаменте ОТО может означать только, что мы нуждаемся в увеличении экспериментальных взглядов на до сих пор скрытые свойства пространства-времени.
2. За четыре десятилетия от первоначального предложения Шиффа и Пью были предприняты другие тесты схемы увлечения. Эти эксперименты (проведенные среди других Бруно Бертотти, Игнацио Киуфолини и Петером Бендером, а также И.И.Шапиро, Р.Д. Ризенбергом, Дж.Ф.Чандлером и Р.В. Бэбкоком) изучали движение Луны, а также спутников, вращающихся вокруг Земли, и нашли строгое доказательство эффектов увлечения. Преимущество Гравитационного Зонда B (Gravity' Probe B) в том, что это первый полностью контролируемый эксперимент, один из тех, которые находятся под полным контролем экспериментаторов, что должно дать самое точное и самое прямое доказательство схемы увлечения.
Поимка волны
Существенным уроком ОТО является то, что масса и энергия вызывают деформацию ткани пространства; мы проиллюстрировали это на Рис. 3.10, показав искривленное окружение вокруг Солнца. Однако, имеется ограничение на такого рода рисунки, заключающееся в том, что они не годятся для иллюстрации, как пространственные деформации и искривления эволюционируют, когда масса и энергия двигаются или некоторым образом изменяют свою конфигурацию. [3] ОТО предсказывает, что точно так же, как батут предполагает фиксированную, искривленную форму, если вы стоите совершенно спокойно, но перемещается, когда вы прыгаете вверх и вниз, пространство предполагает фиксированную искривленную форму, если материя полностью спокойна, как предложено на Рис. 3.10, но, когда материя двигается взад и вперед, возникает волнистая рябь на его ткани. Эйнштейн пришел к этому результату между 1916 и 1918, когда он использовал вновь полученные уравнения ОТО, чтобы показать, что, – почти как электрические заряды, двигающиеся вверх и вниз в радиопередающей антенне, производят электромагнитные волны (это то, как производятся радио и телевизионные волны), – движение материи есть способ и причина (как взрыв сверхновой) для производства гравитационных волн. А поскольку гравитация есть кривизна, гравитационная волна есть волна кривизны. Точно так же, как бросание булыжника в пруд генерирует распространяющиеся наружу водяные волны, вращающаяся по спирали материя генерирует расходящуюся во все стороны пространственную рябь; в соответствии с ОТО взрывы удаленных сверхновых подобны космическим булыжникам, брошенным в пространственно-временной пруд, как показано на Рис. 14.2. Рисунок освещает важную отличительную особенность гравитационной волны: в отличие от электромагнитной волны, волны звука или водяной волны – волн, которые путешествуют по пространству, – гравитационные волны путешествуют внутри пространства. Они представляют собой путешествующие искажения в геометрии самого пространства.
3. Хотя приведенные рисунки эффективны в том, что дают почувствовать открытие Эйнштейна, другое ограничение стандартных представлений деформированного пространства в том, что они не иллюстрируют деформацию времени. Это важно потому, что ОТО показывает, что для обычного объекта вроде Солнца, в противоположность чему-нибудь экстремальному вроде черной дыры, деформация времени (чем ближе вы к Солнцу, тем медленнее будут идти ваши часы) намного более выражена, чем деформация пространства. Затруднительно изобразить деформацию времени графически, но труднее передать, как деформированное время дает вклад в искривление пространственных траекторий, таких как земная эллиптическая орбита вокруг Солнца, именно поэтому Рис. 3.10 (и другие рисунки среди любых попыток визуализировать ОТО, которых я только видел) сориентирован исключительно на деформированном пространстве. Но полезно иметь в виду, что в большом количестве известных астрофизических окружающих явлений деформация времени доминирует.
Рис 14.2 Гравитационные волны являются рябью в ткани пространства-времени.
Хотя гравитационные
волны являются теперь общепринятым предсказанием ОТО, на многие годы этот предмет погряз в замешательстве и разногласиях, по меньшей мере, в части, следующей приверженности философии Маха. Если ОТО полностью включает в себя идеи Маха, тогда "геометрия пространства" будет просто общепринятым языком для выражения положения и движения одного массивного объекта по отношению к другим. Пустое пространство при таком образе мыслей будет пустым понятием, так как можно осмысленно говорить об искажении пустого пространства? Многие физики пытались доказать, что предложенные волны в пространстве означают ошибочное истолкование математики ОТО. Но при должном подходе теоретический анализ сводился к корректному заключению: гравитационные волны реальны и пространство может колебаться.С каждым проходящим пиком и впадиной искаженная гравитационной волной геометрия будет растягивать пространство – и все в нем находящееся – в одном направлении, а затем сжимать пространство – и все в нем находящееся – в перпендикулярном направлении, как в чрезвычайно преувеличенном виде изображено на Рис. 14.3. В принципе, вы можете обнаружить прохождение гравитационной волны, периодически измеряя расстояния между различными положениями, и найти, что отношение между этими расстояниями каждое мгновение изменяется.
На практике никто не смог сделать этого, так что никто непосредственно не обнаружил гравитационную волну. (Однако, имеются убедительные косвенные доказательства для существования гравитационных волн [4] ). Трудность в том, что возмущающее воздействие проходящей гравитационной волны обычно очень мало. Атомная бомба, взорванная на атолле Тринити 16 июля 1945, содержала энергию, эквивалентную 20 000 тонн тринитротолуола и была столь яркой, что свидетели, удаленные на мили, носили защиту для глаз, чтобы избежать серьезного повреждения зрения от сгенерированной ей электромагнитной волны.
4. В 1974 Руссел Халс и Джозеф Тейлор открыли двойную систему пульсаров – два пульсара (быстро вращающейся нейтронной звезды), обращающихся друг вокруг друга. Поскольку пульсары двигаются очень быстро и очень близко друг к другу, ОТО Эйнштейна предсказывает, что они будут испускать большое количество гравитационного излучения. Хотя в самом деле проблематично детектировать это излучение непосредственно, ОТО показывает, что излучение должно проявлять себя косвенно через другие вещи: энергия, эмитированная через излучение, должна вызывать постепенное снижение периода обращения двух пульсаров по орбите. Пульсары наблюдаются непрерывно с момента их открытия и на самом деле их орбитальный период уменьшается – и способом, который согласуется с предсказаниями ОТО с точностью, примерно, на одну часть из тысячи. Таким образом, даже без прямого детектирования эмитированной гравитационной радиации это обеспечивает строгое доказательство ее существования. За это открытие Халсу и Тейлору присудили Нобелевскую премию по физике за 1993.
Рис 14.3 Проходящая гравитационная волна растягивает объект сначала одним, а потом другим образом. (В этом представлении масштаб искажения типичной гравитационной волны чудовищно преувеличен).
Однако, даже если бы вы стояли прямо под стофутовой стальной башней, на которую была поднята бомба, гравитационные волны, произведенные ее взрывом, смогли бы растянуть ваше тело тем или иным образом только на ничтожную долю атомного диаметра. Настолько сравнительно слабы гравитационные возмущения, и это дает слабое представление о технологических проблемах, связанных с их обнаружением. (Поскольку гравитационные волны также могут мыслиться как гигантское число гравитонов, путешествующих скоординированным образом, – точно так же, как электромагнитная волна есть объединение гигантского количества скоординированных фотонов, – это также дает намек на то, насколько тяжело обнаружить отдельный гравитон).
Конечно, нам не особенно интересно детектировать гравитационные волны, произведенные ядерным оружием, но ситуация с астофизическими источниками не намного легче. Чем ближе и более массивен астрофизический источник и чем более энергичному и неистовому движению он подвержен, тем более сильные гравитационные волны мы можем получить. Но даже если звезда на расстоянии 10 000 световых лет становится сверхновой, результирующая гравитационная волна, достигающая Земли, будет растягивать метровой длины палку только на миллионную миллиардной доли сантиметра, лишь на сотни размеров атомных ядер. Так что, за исключением некоторого в высшей степени неожиданного астрофизического явления, в полном смысле слова с параметрами катаклизма, которое произойдет относительно близко, обнаружение гравитационных волн потребует аппаратуры, способной откликаться на фантастически малые изменения длины.
Ученые, которые спроектировали и построили Обсерваторию Гравитационных Волн на Лазерном Интерферометре (Laser Interferometer Gravitational Wave Observatory – LIGO) (запущенную совместно Калифорнийским Технологическим Институтом и Массачусетским Технологическим Институтом и финансируемую Национальным Фондом Науки), ответили на вызов. LIGO является впечатляющей установкой, а ожидаемая чувствительность поразительна. Она состоит из двух полых труб, каждая четырехкилометровой длины и чуть более метра ширины, которые расположены в виде гигантской буквы L. Лазерный свет, одновременно запущенный в вакуумный тоннель внутри каждой трубы и отраженный назад сильно отполированными зеркалами, используется для измерения относительной длины каждой трубы с фантастической точностью. Идея в том, что когда гравитационная волна проходит мимо, она будет растягивать одну трубу относительно другой, и если растяжение достаточно велико, ученые будут в состоянии обнаружить его.
Трубы длинные, поскольку растяжение и сжатие, совершаемое гравитационной волной, складывается по длине объекта. Если гравитационная волна растянула что-либо четырехметровой длины, скажем, на 10–20 метра, она растянет нечто четырехкилометровой длины на 10–17 метра. Так что, чем длиннее наблюдаемый размах, тем легче обнаружить изменения его длины. Чтобы извлечь выгоду из этого, экспериментаторы LIGO на самом деле направляют лазерные лучи отражаться туда и сюда между зеркалами на противоположных концах каждой трубы более чем сто раз за каждый пробег, повышая отслеживаемое расстояние в оба конца примерно до 800 километров на луч. С такими хитрыми уловками и инженерным мастерством LIGO должна быть в состоянии обнаружить любое изменение в длинах труб, которое меньше толщины человеческого волоса в триллион раз – в сто миллионов размеров атома.