Чтение онлайн

ЖАНРЫ

Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
Шрифт:

Представьте себе, что вы находитесь в поезде, несущемся через поля и леса. Будем считать, что это не старомодный поезд на колесах, а суперсовременный – парящий над рельсами с помощью магнитной левитации. Если в поезде достаточно тихо и он движется без рывков, невозможно определить, не глядя в окно, с какой скоростью вы движетесь. А если, не обращая внимания на окружающих, проводить в поезде физические эксперименты, обнаружится, что скорость, с которой мы движемся, не имеет никакого значения. Поезд может стоять совершенно неподвижно или мчаться со скоростью 160 км/ч, результат вспенивания ментоловых пастилок при опускании в диетическую кока-колу будет в точности тем же самым.

В нашей повседневной жизни мы не замечаем этого замечательного факта

по одной простой причине: мы можем выглянуть в окно или просто высунуть на улицу руку, и мгновенно становится ясно, что мы быстро движемся. Таким же образом мы даже можем измерить (или по крайней мере оценить) нашу скорость относительно земли или воздуха.

Это пример нарушения симметрии. Законы физики не зависят от того, как быстро вы двигаетесь, но поверхность земли и воздух определенно это чувствуют, и из-за них появляется выделенная скорость, а именно – нулевая, то есть та, при которой вы «покоитесь относительно поверхности земли». Это тот случай, когда фундаментальные правила игры обладают симметрией, но наша окружающая среда их не уважает и нарушает, и тогда мы говорим, что симметрия нарушена окружающей средой. Точно так же поступает со слабыми взаимодействиями поле Хиггса. Основополагающие законы физики подчиняются определенной симметрии, а поле Хиггса ломает ее.

Нарушение симметрии, о котором мы до сих пор говорили, часто называют «спонтанным» нарушением симметрии. Это способ сказать, что симметрия на самом деле действительно есть, и ее можно разглядеть в основных уравнениях, описывающих устройство мира, но из-за некоторых особенностей нашей среды появляется выделенное направление. То, что вы можете высунуть руку из окна поезда и измерить вашу скорость относительно воздуха, не меняет того факта, что законы физики инвариантны относительно скорости. На самом деле иногда из осторожности говорят о «скрытой» симметрии, а не о «спонтанно нарушенной». Подробнее об этом понятии спонтанности будет сказано в одиннадцатой главе.

Симметрии слабых взаимодействий

Оказалось, что идея Янга и Миллса по поводу симметричности нейтронов и протонов была в основном правильной. Теперь мы, конечно, уже знакомы с кварками, так что симметрию между верхними и нижними кварками можно предположить по аналогии. И в этом случае возникают похожие проблемы, ведь верхние и нижние кварки имеют различные массы и различные электрические заряды. Если бы эти различия можно было объяснить существованием хиггсовского поля, мы оказались бы правы. И как выяснилось, это действительно можно сделать.

Вот тут все становится настолько запутанным, что более подробное описание этих идей вынесено в Приложение 1. (Эти теории и не должны быть простыми. Мы рассказываем о серии открытий, за которые присуждено несколько Нобелевских премий!) Основные сложности заключаются в том, что элементарные фермионы обладают определенным свойством, называющимся «спин». Безмассовые частицы, которые всегда движутся со скоростью света, могут вращаться в одном из двух направлений: по часовой стрелке или против (если считать, что они летят на нас), то есть быть либо правшами, либо левшами. Секрет слабых взаимодействий состоит в том, что существует симметрия в отношении всех частиц-левшей и связанная с ней сила, но нет соответствующей симметрии для частиц-правшей. Слабые взаимодействия нарушают четность – они по-разному относятся к левшам и правшам. Можно составить представление о четности, вообразив, что вы смотрите на мир, отраженный в зеркале, где право и лево переставлены местами. Большая часть взаимодействий (сильные, гравитационные, электромагнитные) проявляют себя одинаково, смотрите ли вы на них непосредственно или через зеркало, но слабые взаимодействия воздействуют на правшей и левшей по-разному.

Симметрия слабых взаимодействий разбивает левые частицы на следующие пары:

верхний кварк <-> нижний кварк

очарованный кварк <-> странный кварк

истинный кварк <-> прелестный

кварк

электрон <-> электронное нейтрино

мюон <-> мюонное нейтрино

тау-частица <-> тау-нейтрино.

Частицы, которые мы объединили здесь в пары, на первый взгляд кажутся очень разными, у них разные массы и заряды. Это все потому, что поле Хиггса, прячущееся в засаде, нарушает симметрию между ними. Если бы не было этого маскарада, частицы в каждой паре были бы совершенно неразличимы, так же как красные, зеленые и синие кварки, которые мы сейчас считаем тремя различными версиями одного и того же кварка.

Само поле Хиггса поворачивается под влиянием симметрии слабых взаимодействий. И именно поэтому когда оно принимает ненулевое значение в пустом пространстве, оно задает выделенное направление, так же как воздух задает скорость, относительно которой мы измеряем свою скорость при путешествии в поезде. Вернемся к нашему примеру с маятником. Самое низкое (устойчивое) энергетическое состояние обычного маятника совершенно симметрично, когда он направлен вниз. Перевернутый маятник, подобно полю Хиггса, нарушает симметрию, когда переходит в устойчивое состояние, то есть падает влево или вправо.

Если вы безнадежно заблудились в лесу ночью, все направления кажутся вам одинаковыми. Вы можете как угодно поворачиваться вокруг оси, стоя на месте, но толку! Прямо скажем, вы оказались в весьма тяжелой ситуации. Однако если у вас есть компас и вы помните, что собирались идти на север, направление, заданное компасом, нарушит симметрию. Теперь у вас появилось правильное направление движения, а остальные направления стали неправильными. Точно так же без хиггсовского поля электрон и электронное нейтрино (к примеру) были бы тождественными частицами. Их можно превращать друг в друга, и в результате в комбинации они станут неразличимыми. Но поле Хиггса, подобно компасу, ломает симметрию и задает выделенное направление. И тогда появляется одна конкретная комбинация полей, взаимодействующая сильнее с полем Хиггса, – ее мы называем «электроном» – и другая, которая не взаимодействует, и ее мы называем «электронным нейтрино». Такое различие между ними имеет смысл только благодаря полю Хиггса, заполняющему все пространство.

Если бы не нарушение симметрии, фактически имелось бы четыре бозона Хиггса, а не один – имелось бы две пары частиц, которые превращались бы друг в друга благодаря симметрии слабого взаимодействия. Но когда поле Хиггса заполняет пространство, три из этих частиц «съедаются» тремя калибровочными бозонами слабых взаимодействий, которые таким образом превращаются из безмассовых носителей взаимодействий в массивные W– и Z-бозоны. Да, да, именно так физики и формулируют это: бозоны слабого взаимодействия прибавляют в весе, поедая лишние бозоны Хиггса. Вспомним, что мы – то, что мы едим.

Возвращение к большому взрыву

Аналогия между полем Хиггса и перевернутым маятником на самом деле довольно удачная. Как по отношению к полю Хиггса, так и по отношению к маятнику основные законы физики совершенно симметричны, в них нет дискриминации ни левого, ни правого. Но у маятника есть только две устойчивые конфигурации – в положении лежа, слева или справа от точки крепления. Если бы мы попытались сбалансировать его очень тщательно в симметричной конфигурации, когда его конец направлен прямо вверх, все равно, любой незаметный толчок тотчас заставил бы его упасть влево или вправо.

Поле Хиггса ведет себя таким же образом. Оно может принять нулевое значение в пустом пространстве, но это будет нестабильной конфигурацией. Чтобы поднять маятник, неподвижно лежащий слева или справа от точки крепления, в вертикальное положение, мы должны затратить некоторую энергию. То же самое применимо и к полю Хиггса. Для выведения его из устойчивого ненулевого значения в каждой точке пространства в нулевое потребуется нечеловеческое количество энергии – гораздо больше, чем полная энергия теперешней наблюдаемой Вселенной.

Поделиться с друзьями: