Чтение онлайн

ЖАНРЫ

Частица на краю Вселенной. Как охота на бозон Хиггса ведет нас к границам нового мира
Шрифт:

Но Вселенная когда-то была гораздо более плотной, ее полная энергия была сконцентрирована в гораздо меньшем объеме. Во времена Большого взрыва – 13,7 миллиардов лет назад – вещество и излучение были невероятно сжаты и температура намного выше. Оставаясь в маятниковой аналогии, представьте себе, что перевернутый маятник закреплен на столе, а не прикручен болтами к полу. «Высокая температура» означает много быстрых случайных движений частиц – в нашей аналогии это похоже на то, что кто-то начинает руками трясти стол. Если трясти достаточно энергично, то в какой-то момент маятник получит такой сильный толчок, что он перекинется слева направо (или наоборот). А если трясти уже по-настоящему, как следует, маятник будет как сумасшедший все время болтаться между двумя положениями. Он проведет в среднем столько же времени в левой позиции, сколько и в правой. Другими словами, при высоких температурах

перевернутый маятник снова становится симметричным.

То же самое происходит с полем Хиггса. В очень ранней Вселенной температура была невероятно высокой, и поле Хиггса постоянно болталось. В результате его значение в любой точке пространства скачкообразно перестраивалось и в среднем равнялось нулю. В ранней Вселенной существовала симметрия, W– и Z-бозоны были безмассовыми, как и фермионы Стандартной модели. Момент времени, когда поле Хиггса перешло из нулевого среднего значения в некоторое ненулевое, назвали «электрослабым фазовым переходом». Это было похоже на фазовый переход воды в лед при замораживании, правда, в ранней Вселенной никого вокруг не было и никто не мог наблюдать за этим переходом.

Сейчас мы говорим об очень раннем периоде в истории Вселенной – длительностью примерно одну триллионную секунды после Большого взрыва. Если бы вы попытались повторить эти условия у себя дома, поле Хиггса перескочило бы с нулевого в свое обычное ненулевое значение так быстро, что вы бы ни за что не заметили, что оно вообще было нулевым. Но физики могут с помощью уравнений проследить длинную последовательность событий, произошедших в ту первую триллионную долю секунды. И хотя на данный момент у нас нет никаких прямых экспериментальных данных для проверки этих теорий, мы работаем над тем, чтобы сформулировать такие предположения, которые когда-нибудь с помощью наблюдений можно будет подтвердить или опровергнуть.

Теория сложная, но успешная

История о том, что в ненулевых полях в пустом пространстве природа по-разному обходится с левшами и правшами и что одни бозоны прибавляют в весе, поедая другие, может показаться немного надуманной. Этот пазл собирался постепенно, в течение многих лет, и всегда сопровождался хором скептических голосов. Но… факты подтверждают эти теории!

Когда теория слабых взаимодействий была, наконец, сформулирована независимо Стивеном Вайнбергом и Абдусом Саламом, их работы, опубликованные в конце 1960-х годов, почти никто не воспринял серьезно. Уж слишком сложно, введено слишком много полей, выполняющих слишком много странных функций. К тому времени ученые уже поняли, что какие-то переносчики слабого взаимодействия, подобные W-бозонам, обязательно должны существовать в природе. Но Вайнберг и Салам предсказали новую частицу – нейтральный Z-бозон, по поводу которого не было никаких экспериментальных свидетельств. Позже, в 1973 году на детекторе ЦЕРНа с причудливым названием «Гаргамель» нашли свидетельства взаимодействия, в котором участвовал некий бозон, названный позже Z-бозоном. (Сам он, этот Z-бозон, был обнаружен только десять лет спустя, и тоже в ЦЕРНе.) С тех пор каждый эксперимент добавляет данных, и все они подтверждают правильность основных представлений о симметрии слабого взаимодействия, нарушенной полем Хиггса.

В 2012 году ученые, кажется, разгадали тайну поля Хиггса. Но это не конец истории, а только ее начало. Нет сомнений, что теория Хиггса согласуется с наблюдениями, но во многом она кажется довольно натянутой. Все частицы, которые мы когда-либо находили, были либо фермионами – «частицами вещества», либо бозонами, произошедшими из калибровочных полей, связанных с симметрией. Все, кроме бозона Хиггса, который, похоже, имеет другое происхождение. Так что делает его таким особенным? Почему только некоторые симметрии нарушаются и почему именно таким образом? А вдруг есть более глубокая теория и она объяснит все лучше? Теперь мы можем получать экспериментальные данные, а не просто создавать математические модели, и есть основания надеяться, что эксперименты окажут на ученых гораздо более вдохновляющее воздействие, чем просто мозговой штурм, и тогда появятся более совершенные теории.

Глава 9

Бурные аплодисменты

Как найти бозон Хиггса, и почему мы решили, что он найден.

После долгих лет ожидания физики все-таки нашли бозон Хиггса, причем даже раньше, чем надеялись.

Вообще-то ожидание длилось уже более четырех десятилетий – с тех пор как физическая общественность стала считать механизм Хиггса основным механизмом, объясняющим слабые взаимодействия. Но после того, как в декабре 2011 года БАК заработал, ожидание переросло в нетерпение.

В начале декабря в ЦЕРНе было вывешено довольно неприметное объявление о назначенном на 13 декабря семинаре с повесткой

«Новости ЦЕРНа по поискам бозона Хиггса на детекторах ATLAS и CMS». На самом деле новости поступали все время, так что само по себе это объявление не могло возбудить уж такой особый интерес. Но в ЦЕРНе пошли слухи, что это будет не обычный, похожий на прежние, семинар, а учитывая то, что каждая из двух коллабораций – команда, в которой работает более 3000 физиков, слухи эти распространились очень быстро. К тому же 1 декабря британская газета The Telegraph опубликовала статью научного корреспондента Ника Коллинза под заголовком «Поиск частицы Бога почти закончен, ЦЕРН готовится объявить результаты». Сама статья была не так сенсационна, как ее заголовок, но, очевидно, она подогрела ожидания. На физическом сайте viXra.org анонимный комментатор под ником Alex коротко изложил существо проблемы: «Сегодняшний слух: масса бозона Хиггса равна 125 ГэВ в пределах 2–3 сигма», после чего другие блогеры тут же принялись обсуждать теоретические следствия этого события.

«Alex», конечно, мог быть кем угодно – от озорного подростка из Мумбаи, который любит поддразнивать ученых, вплоть до самого Питера Хиггса. Но и в некоторых других блогах и статьях в Интернете обсуждались похожие темы: на семинаре будут сообщены не обычные новости, а что-то очень важное о бозоне Хиггса… Может, даже будет сделано долгожданное объявление о его открытии.

CMS и ATLAS – две большие экспериментальные коллаборации. Они являются миниатюрными республиками, в которых граждане избирают лидеров – своих представителей. Самый главный представитель называется просто – «спикер». Дабы коллаборация выступала с единой позиции, подготовка и оглашение новых результатов жестко контролируются. Не только официальные публикации, но даже устные доклады членов коллаборации проверяются, а самые важные доклады делают сами спикеры. В декабре 2011 года оба спикера были уроженцами Италии: Фабиола Джанотти, сотрудница ЦЕРНа, возглавляла коллаборацию ATLAS, а Гвидо Тонелли из Университета Пизы – коллаборацию CMS.

Джанотти – заметная фигура в экспериментальной физике элементарных частиц, вошедшая в список 100 самых успешных женщин-ученых в мире, составленный газетой The Guardian. Джанотти занялась физикой элементарных частиц сравнительно поздно – в колледже, а до этого в средней школе изучала латынь, греческий, историю и философию, и даже несколько лет проучилась в консерватории по классу фортепиано. Ее интерес к физике возбудила лекция одного профессора о фотоэффекте, точнее, о теории Эйнштейна, в которой утверждалось, что свет всегда распространяется в виде дискретных квантованных пакетов. В 2012 году она возглавляла крупнейший научный эксперимент по поискам важнейшей детали головоломки, заданной нам природой. На просьбу объяснить важность этого поиска Джанотти ответила, использовав высокий стиль: «Фундаментальная наука сродни искусству. И то, и другое связано с духовной сущностью и интеллектом мужчин и женщин как разумных существ».

У обоих докладчиков имелись интересные новости, но их требовалось сообщить самым осторожным образом. В полученных данных действительно обнаружились свидетельства возможных новых явлений, в частности ATLAS нашел намек на то, что масса бозона Хиггса лежит примерно в районе 125 ГэВ. Но в физике элементарных частиц «свидетельства» необычных явлений появляются и исчезают довольно часто. Однако сигнал на 125 ГэВ был похож на тот, который и ожидался от распадающегося бозона Хиггса, причем почти все остальные области масс были уже исключены. (Ведь если вы потеряли ключи и поискали их уже почти во всех возможных местах и не нашли, вас не удивит, если вы обнаружите свои ключи в последнем оставшемся месте.) Усилило доверие к этому результату и то, что и на другом детекторе, CMS, также увидели слабый сигнал примерно в той же области. Опять же, само по себе это не было чем-то особенным, но в совокупности с результатами ATLAS этих свидетельств было более чем достаточно, чтобы аудитория возбудилась.

Джанотти сделала все, чтобы удержать эмоции аудитории под контролем: «Еще слишком рано судить о том, свидетельствует ли этот сигнал о чем-то интересном или он всего лишь некие флуктуации фона». Позже она выразила ту же самую мысль в более доступной форме, процитировав поговорку: «Не делите шкуру неубитого медведя».

Однако данная шкура уже была поделена и продана, причем задолго до того, как медведь был на самом деле убит. С точки зрения статистики, декабрьские результаты, возможно, не представляли собой ничего сенсационного, но они прекрасно совпали с представлениями физиков о том, каким должен быть сигнал, если бозон Хиггса обладает массой примерно 125 ГэВ. Казалось, сбор на БАКе большего количества статистических данных для подтверждения результата – это просто вопрос времени. И его потребовалось даже меньше, чем можно было ожидать.

Поделиться с друзьями: