Диалоги (июнь 2003 г.)
Шрифт:
А.Г. Они вас делегировали.
А.Р. В общем, я думаю, они проверят, правильно ли я здесь всё говорю.
Так вот, на следующем рисунке я вам покажу один пример. Вот корабль и маленький аппаратик здесь показан, который мы опускаем в воду и можем в автоматическом режиме измерять интенсивность процесса фотосинтеза начальных этапов и смотреть, что там происходит. Я вот такой вопрос, допустим, задам. Что будет, если мы будем освещать клетку фитоплантонную, но заставим её голодать при этом? Не дадим ей фосфора, азота. Ответ правильный, казалось бы, такой. Будут происходить первичные процессы, будет происходить разделение зарядов, при этом будут накапливаться АТФ, но роста не будет – потому что не из чего строить тело. Но подождёт клетка хороших времён, когда у нас появится фосфор, азот, но не всё же время она будет голодать. И тогда эта АТФ будет использована, клетка будет расти.
Потому что в клетке существует огромная опасность. А именно. Если у нас есть избыток электронов и избыток энергии электронного возбуждения, не использованные в данный момент времени, то кислород, который везде находится, в том числе, кстати, выделяется при фотосинтезе, как побочный продукт фотосинтеза, будет активироваться, и восстановленный кислород или возбуждённый кислород будет вызывать разрушение мембран.
Кстати, все эти разговоры на счёт озонной дыры – это, видимо, была, так сказать, хорошо проведённая дезинформация, для того чтобы хладагенты заменить. Но само по себе это физически обосновано. Озон, который экранирует от проникания ультрафиолета, мешает активации кислорода. Если вы будете слишком много загорать, у вас появится рак кожи, у вас будет выцветание фотодинамических красителей. Это то, что угрожает самой клетке. Я бы здесь провёл сравнение с недоброй памяти Чернобыльской АЭС. Потому что там тоже скорость выделения энергии в процессе реакции оказалась большей, чем скорость замедления, и произошёл взрыв.
Здесь то же самое. Надо не дать возможности активировать кислород. Как это клетка делает? Это колоссальный пример. Следующий рисунок, пожалуйста. Если кислород активируется, то происходит разрушение клетки. Понятно, чем это всем нам грозит. Так вот, оказывается, клетка делает следующее, когда слишком много света, а она голодная. Она электрон на самых ранних этапах направляет назад за очень короткое время. Время меньшее, чем время, нужное для активирования кислорода. И это происходит не только в лабораторных условиях, а прямо в природе. Вот посмотрите. Эти наблюдения проводились в Средиземноморье, но у нас в Подмосковье то же самое происходит. В восемь утра солнца мало и пищи вполне достаточно. В этом смысле они голодают. Пища соизмерима с количеством квантов. Я очень грубо говорю, но понятно.
А.Г. Пропорция верная.
А.Р. Не слишком много квантов, не захлёбывается она. И интенсивность фотосинтеза большая. А вот поднимается солнце, 12 часов дня, интенсивность фотосинтеза падает и становится минимальной. Что значит падает? Электрон обращается назад. Это сопровождается увеличенным свечением – не дать кислороду схватить эту энергию, не разрушить клетку. А потом, когда солнце заходит, опять все возвращается назад. Вот и у нас то же самое. Можно на следующем рисунке это увидеть. Вот посмотрите, Можайское водохранилище. Ну, не Адриатическое море, но свои прелести здесь тоже есть. На глубине одного метра в десять часов утра интенсивность фотосинтеза максимальная. Не так уж много солнца у нас в Подмосковье в десять часов утра. Но когда в два часа дня интенсивность солнца уже достаточно большая и на глубине одного метра его слишком много – вот тут интенсивность фотосинтеза упала. А на глубине двух метров она как раз стала максимальной. То есть, они активно это регулируют.
Я тут не позволю себе вдаваться в механизмы, но чтобы остаться, так сказать, в рамках жанра, скажу, что здесь идёт восстановление пластахинона, о котором я говорил. Только эти научные слова произнесу, глубже не буду вдаваться. За счёт того, что появляется большой отрицательный заряд на пластахиноне, за счёт ликростатического отталкивания электроны не успевают, им не дают возможности уйти в цепь, кислород не успевает активироваться за это время. Это что касается активность фотосинтеза. Теперь как использовать эти показатели для того, чтобы определить степень антропогенного загрязнения.
Можно просто измерять эту интенсивность фотосинтеза начальных этапов по переменной флуоресценции, измерять в режиме реального времени, в реальных условиях. Я вам покажу несколько примеров, которые интересны. Это мы делаем на нашей кафедре. Мы заключили договор с мэрией Москвы и провели обследование различных деревьев. Результаты я вам потом покажу. С нашим шариком мы проехали на трамвайчике по Москва-реке. Что мы получили. Вот посмотрите. 40 километров мы проехали по Москва-реке. Растёт количество водорослей в Москва-реке по мере продвижения в городскую черту. Почему? Вообще, они живут, так сказать, и процветают там. А вот интенсивность фотосинтеза остаётся приблизительно постоянной. Их много, но все они себя чувствуют неплохо. Но вот в некоторых местах, а именно, в устье Яузы, и в устьи ещё одной реки… Не помню, не могу разобрать…
А.Г.
Завод имени Лихачёва и Южный порт. Самые экологические неприятные места.А.Р. Да, да, да. Вот посмотрите, что мы видим. Резкое уменьшение интенсивности фотосинтеза. Мы мэрии предлагали сделать всё бесплатно, дайте нам трамвайчик, мы проедем по Москва-реке и покажем, где неучтённые вами сбросы вод. В режиме реального времени. Но – это к вопросу о востребованности науки – дальше платонических разговоров дело не пошло.
А.Г. Но данные же вы получили всё-таки.
А.Р. Ну, одно дело эти данные. Другое дело, что с ними делать. Мы большое беспокойство вызываем. Спокойнее гораздо знать то, что есть и не знать ничего больше. Я думаю, тут понятно, что я хочу сказать. Не хочу кидать ни в чей огород камешки, но мы можем это сделать. Пока не получилось.
Другая проблема есть. Скажем, проблема цветения водорослей, забивка труб сточных, ещё чего-то такое. Это очень важный момент. Вот на озере Байкал важно предсказать время цветения. На озере Байкал активное цветение начинается, примерно, где-то в конце февраля и идёт в марте. Ну, это известно. А вот, посмотрите, как идёт интенсивность фотосинтеза на начальных этапах. Она начинает подниматься за два-три месяца до цветения. Они начинают готовиться. Представьте себе, насколько это важно знать в данном конкретном водоёме или в какой-нибудь системе, где идёт, возможно, загрязнение – знать и заранее всё это предсказать. Насколько это важно.
Вот переменные флуоресценции уже на городских лесонасаждениях. Ну, мы знаем, что в Москве гибнут десятки тысяч деревьев. Причём, как они гибнут? Оно стоит, стоит, потом оно, так сказать, довольно резко гибнет. И потом начинается постфактум – выяснение. А почему у нас здесь было вредное место, ещё чего-то такое. Вот мы прошли улицу Марии Ульяновой и измерили эту переменную флуоресценцию. У нас есть небольшое ноу-хау, как можно мерить переменную флуоресценцию не только на листьях, но и на коре. Это зимой даже можно сделать, когда никаких листьев нет. Это так вот, маленький секрет. И вот красным обозначены опасные места, они совпадают либо с автобусной остановкой, либо с каким-то местом, где было какое-то строительство, либо где автобусы дизели свои не выключали, вот что-то в таком духе. И можно же провести сканирование. Более того, при планировании, скажем, фасадов каких-то можно с точностью до одного-двух метров показать безопасное расстояние для лесонасаждений.
А.Г. Кроме того, выбрать, наверное, и породы деревьев, которые будут устойчивы.
А.Р. Абсолютно точно. Представляете, какая проблема. Вы дорогие какие-то саженцы привезли, да ещё они откуда-нибудь с юга. И вы не знаете, какие приживутся тут, в наших условиях. А мы по этой величине в зависимости от температурного воздействия их можем отобрать. Причём, с большой точностью, в слепых опытах мы это делали.
С мичуринцами у нас договор был. Мы дали им соответствующий прибор, маленькую такую прищепочку, как мы её называем, спектроскопическую, с помощью которой они могут определить зимостойкость яблоневых саженцев. И они это используют активно, это очень хорошая вещь. Ещё один пример я вам покажу. Вот, допустим, антропогенное загрязнение – соли тяжёлых металлов. Вообще проблема питьевой воды – известная вещь. Бывает же ситуация такая, когда по химическим анализам всё хорошо, а в целом сочетание вредное. Ну и обратная картина.
А.Г. Кроме того, динамические характеристики важны. Сейчас всё хорошо, а через две минуты всё плохо.
А.Р. Конечно, конечно. По частям всё вроде хорошо, а общее впечатление отвратительное. Как в известном анекдоте о впечатлении делегации по поводу завода. «И то хорошо, и это хорошо, а общее впечатление – отвратительное».
Итак, здесь водоём с разной концентрацией йонов меди. Они небольшие в том смысле, что количество клеток – зелёная линия – не меняется. То есть, никто ещё не гибнет, всё хорошо. А по переменной флуоресценции уже идёт падение. Это идёт отравление. За много дней до того, как произошло падение клетки. Это есть экспресс-диагностика, которую можно использовать. Поэтому я сейчас пользуюсь тем, что мы с вами говорим, и мы это продолжение повторяем. Мы готовы это сделать, мы готовы обучить персонал. Это не простые измерения, это не на весах взвесить. Это более сложная вещь. Мы готовы, мы работаем в университете, это наши обязанности. Нам это интересно. И это можно сделать. Растения стоят на перекрёстке дорог и никуда не бегут. Это естественные часовые. Фитапланктон в Москве-реке живёт, и он показывает, что там происходит. И это нужно использовать. И это не наша только выдумка, весь мир перешёл на спектральный метод автоматического мониторинга в режиме реального времени. Ну, и, хоть здесь, может, мы не отстанем. Я уж не знаю.