Диалоги (июнь 2003 г.)
Шрифт:
Д.С. Ну, не надо… У вас всё-таки лидирующий ботанический институт в России…
А.О. Сейчас вопрос о чисто техническом оснащении. Так или иначе, обнаружились объекты, которых можно брать много, строить матрицы данных с очень большим числом равновесомых признаков. Тот нуклеотид или иной нуклеотид в данной позиции – вот вам и признак. Этих нуклеотидов тысячи. И если для морфологических признаков, которые видны простым глазом, этот подход действительно не очень работал, во-первых, потому что признаков не так много, а во-вторых, а может быть, даже во-первых, потому что эти признаки заведомо неравнозначны, и вообще любой объект мы можем расчленить на неопределённое число признаков, то последовательности ДНК дают нам совершенно объективное расчленение на чёткие и равновесомые признаки. И вот сейчас молекулярная систематика стала достаточно мощной областью, она уже прочно вошла, собственно, в ботанику. Хотя это и порождает определённые проблемы. Тут, наверное, вы расскажете лучше…
Д.С. Вы знаете, тут просто целый комплекс очень интересных математических
Есть другая проблема. Классическая вычислительная математика сначала была проговорена и продумана ещё в докомпьютерную эпоху, когда сначала долго объясняли, как этот алгоритм работает и почему его так надо организовывать, а не как-нибудь по-другому. Я верю, что те, кто писал кладистические программы, хорошо понимают, почему они должны работать именно так. Но это знание, оно в очень многом не очевидно. И вот для компьютерной реализации это очень необычная ситуация, когда вроде бы есть работающая программа, а как она точно работает и почему – пользователи затрудняются объяснить. Ну, с этим тоже, по-видимому, удастся сладить. Но в целом это очень привлекательная задача – сделать так, чтобы эти программы пошли на кластерах параллельных компьютеров и чтобы действительно мы понимали не просто рецептурно, как она работает, а концептуально.
А.О. К сожалению, очень немногие систематики, пользователи подобных программ, вообще задаются вопросом: а что там внутри этой программы? То есть признаки грузят, на выходе получают кладограмму. Она им нравится или не нравится, и какие-то меняют условия, играют. А смысл того, что внутри, к сожалению, остаётся, как правило, за кадром. Тут возникает масса недоразумений. Лично я смотрю на эти программы и на эти деревья как на своего рода карты, карты разнообразия живого. Это отнюдь не генеалогические деревья, не дерево, которое изображает историю, буквальный исторический сценарий, как развивались данные таксоны, а именно как карта. И, точно так же, как в географии, существуют разные способы спроецировать земную поверхность, которая отнюдь не ровная, на плоскость карты. Существуют разные проекции. Существуют разные системы координат. Аналогично и здесь. Просто разные программы, насколько я понимаю, отличаются способом проецирования эмпирического разнообразия живых организмов на некоторую идеальную плоскость или на некоторое идеальное пространство. Но тут, наверное, можно перейти к распознаванию…
Д.С. Распознавание образов вообще очень тяжёлая область математики, где с большой кровью и с большим трудом даётся прогресс. Есть такие очевидные вещи, которые человек легко решает. Я субъективно уверен, скажем, что вы не марсианин, а объяснить это компьютеру – очень непростая задача. И её, в общем, нужно решать совместно и математикам и биологам. С моей точки зрения, для того чтобы подобные программы начали хорошо работать, должны появиться люди, которые в одной своей ипостаси, скажем, ботаники, а в другой – специалисты, скажем, по вычислительной математике.
Это трудно, но исторически примерно так развивалась, скажем, математическая физика. Были у её истоков такие люди, например, как Андрей Николаевич Колмогоров. Математик, но писал и чисто физические работы. Скажем по теории турбулентности, за которые любому, самому заядлому физику памятник нужно ставить. Нужно, чтобы такие же люди появились у того места, где внедряются компьютерные программы.
А.О. Тогда, может быть, надо говорить немножко иначе. Да, действительно, я уже сказал, что вид – это то, что считает видом компетентный систематик. То есть, виды обычно распознаются «в лицо». И для того чтобы научить распознавать других людей, несистематиков, указываются идентификационные признаки, определительные признаки. Но часто эта задача достаточно сложна. Здесь и нужно помочь несистематикам распознавать виды. Вот это – запрос от ботаников к математикам, который, как я понимаю, пока не вполне удовлетворён.
Д.С. Вполне не удовлетворён.
А.О. Что касается вашего рассуждения, я думаю, что сейчас появляется определённого рода профессия под названием «когнитология», наука об интервьюировании экспертов. Мы имеем дело не с субъективным, а так называемым экспертным знанием, и задача когнитолога поговорить, понять, раскрыть опыт, личный опыт эксперта, и формализовать его в таком виде, чтобы представить его в виде компьютерной программы.
Но теперь нам, наверное, стоит перейти к области ботаники, в которой нужда в применении математики прямая и непосредственная, это морфология
растений. Когда речь идёт о форме растений, то тут само напрашивается применение геометрии. Здесь вот существуют разные подходы, один из них развивается в Москве, в Зоологическом музее при Университете, где работает Игорь Яковлевич Павлинов. Он пропагандирует подход под названием «геометрическая морфометрия». Его статью об этом я прочитал буквально три дня назад в «Журнале общей биологии», в самом последнем выпуске. Подход в том, что описывается разнообразие формы некоего органа или целого организма, а затем выявляются правила топологического преобразования этой формы. Я видел эту работу, она любопытна, но пока лично я не знаю, как осмысленно применить этот метод для себя, для моих узких задач. Но я надеюсь, что, может быть, для распознавания видов он может быть и применён.Д.С. Морфология, которая является одним из базисов систематики, – наука о форме, и геометрия тоже наука о форме, только морфология растений – наука о форме растения, геометрия – наука о форме вообще. Тут общность интересов очевидна. Вопрос в том, как развить те геометрические подходы, которые действительно нужны. И тут мы ещё раз выходим на применение фракталов. Действительно, многие растения демонстрируют нечто похожее на фракталы. Фракталы – это не просто объекты промежуточной размерности, это, как правило, объекты, у которых есть, как говорят, самоподобие. Они в малом устроены так же, как в большом.
А.Г. Значит, он опознаётся по любому участку.
Д.С. Да, опознаётся. Но нужно, наверное, иллюстрацию показать какую-нибудь.
А.О. Использование фрактальных подходов в морфологии растений, в большой мере было подготовлено морфологическими исследователями французских ботаников. С одной стороны, это так называемая концепция архитектурных моделей, которая была предложена французскими ботаниками Алле и Олдеманом в 70-е годы. Эти ботаники долгое время работали во Французской Гвиане. Они столкнулись с необходимостью описывать структуру вегетативного тела тропических деревьев, но у них не было концептуального аппарата. Оказалось, что та морфология растений, те концепции, которые сложились у нас в Европе, в лесах умеренного пояса, в тропиках не работают. И тогда Алле и Олдеман предложили концепцию так называемых архитектурных моделей. Дерево рассматривается как конструкция, состоящая из модулей, которые в определённой последовательности нарастают друг на друга. Есть разные типы модулей, разные способы нарастания, и модели строятся комбинаторно. То есть, у одних деревьев идёт непрерывное нарастание, скажем, одной вертикальной оси, у других происходит перевершинивание. Одна ось кончается цветком, то есть рост останавливается, у других осей рост открытый. Возможно горизонтальное положение побегов, а возможно и вертикальное. Всего известно 23 архитектурных модели, некоторые комбинации не могут быть реализованы в природе. Фактически, эта такая структуралистская концепция, которая, кстати, развивалась одновременно с работами Леви-Стросса. Я не знаю, читали ли Алле и Олдеман работы знаменитых французских структуралистов-гуманитариев, но наверняка интеллектуальная атмосфера того времени располагала к созданию подобных концепций…
Д.С. Можно я про интеллектуальную атмосферу два слова скажу? Честность научная заставляет сказать, что впервые на это обратил внимание Свифт. У него есть хорошие стихи, которые всегда по этому поводу цитируются. Он не только «Путешествия Гулливера» написал. У него есть ещё замечательные поэмы, рапсодия «О поэзии», в которой он пишет (перевод Маршака):
«Натуралистами открыты у паразитов паразиты. И произвёл переполох тот факт, Что блохи есть у блох. И обнаружил микроскоп, Что на клопе бывает клоп, Питающийся паразитом. На нём другой – ad infinitum».Вот такая модульная структура в животном царстве. Надо сказать, Маршак этот отрывок специально подсобрал из разных мест этой поэмы. Мой хороший знакомый Дэвид Мосс из университета Манчестера по моей просьбе изучил, как Свифт это публиковал, и оказалось – в английском оригинале немножко более смазано сказано, а здесь у Маршака – очень здорово.
А.О. Ну, тогда попросим следующую иллюстрацию. Вот другая концепция, тоже пришедшая из Франции, это концепция псевдоциклов. Концепция псевдоциклической эволюции, которая была предложена в 30-е годы французским биологом Госаном. Он обратил внимание, что у многих организмов, не только у растений, но, например, у колониальных животных, наблюдается удивительное сходство частей и целого, и рассмотрел это как общую тенденцию эволюции. Например, вот как на этой иллюстрации. Слева мы видим соцветие простой зонтик, у примулы, например, справа мы видим соцветие сложный зонтик, типичный для зонтичных – морковки или, например, тмина. Здесь видим, что структура повторяется на следующем уровне. Но интересно, что эволюция идёт в направлении, во-первых, упрощения этих частей. То есть, эти простые зонтички в сложном зонтике в процессе эволюции редуцируются до одного цветка. А с другой стороны, вся побеговая система превращается в зонтик следующего порядка. И вот Татьяна Валентиновна Кузнецова, выдающийся морфолог, работавшая на кафедре высших растений в Московском Университете, и, к сожалению, безвременно оставившая нас, специально занималась псевдоциклами у соцветий зонтичных. Она проследила до 5 псевдоциклов у разных зонтичных. То есть, вот пример самоподобия, а заодно и фрактальных свойств (таких как автомодельная симметрия) у соцветий. Это как раз та биологическая концепция, которая просто напрашивается на математизацию.