Чтение онлайн

ЖАНРЫ

Эволюция. Классические идеи в свете новых открытий
Шрифт:

Генетическую подоплеку иммунной избирательности и последующей изоляции ученым предстоит еще узнать. В организации иммунной системы, особенно у беспозвоночных, пока еще много неизвестного. Кстати, не следует думать, что предполагаемый механизм иммунологического тестирования партнеров может работать только у животных. Растения тоже выбирают себе партнеров на основе степени их родства: известны такие явления, как выбор пыльцы и уже знакомая нам самонесовместимость. И без иммунологии здесь тоже не обошлось: в отбраковке неподходящей (родственной) пыльцы участвуют ферменты РНК-азы, изначальная функция которых — иммунологическая, они защищают растение от инфекций, а для этого нужно уметь отличать «чужое» от «своего». Впрочем, что здесь изначально, а что вторично — еще вопрос.

Интересный пример видообразования с прямым участием систем различения своего

и чужого — инфекционное видообразование. У многих видов членистоногих скрещивание контролируется паразитической бактерией вольбахией, которая способна создавать репродуктивную несовместимость между насекомыми, зараженными разными штаммами (видами, клонами) бактерии. В основе этого явления лежит умение вольбахии безошибочно отличать собственную разновидность от чужих. В результате вид насекомых, зараженный двумя штаммами вольбахии, насильственно разделяется на два! Доказанных случаев инфекционного видообразования пока известно немного. Классический пример — южноамериканский надвидовой комплекс Drosophila paulistorum, разорванный разными штаммами вольбахии на шесть репродуктивно изолированных симпатрических «полувидов» (Miller et al., 2010). Но мы не очень удивимся, если окажется, что роль инфекционного видообразования в эволюции самого разнообразного класса животных — насекомых — больше, чем принято считать.

Как бактерии становятся ксенофобами

Способность отличать своих от чужих — фундаментальное свойство живых организмов. На этой способности основаны важнейшие биологические процессы: секс, формирование репродуктивной изоляции, защита от паразитов и конкурентов, отторжение чужеродных тканей, колониальность, многоклеточность, социальность, включая разные формы кооперации и альтруизма (который обычно направлен на своих, прежде всего на родственников).

В ходе эволюции у эукариот развились разнообразные механизмы различения своего и чужого. У прокариот они тоже есть. Например, многие бактерии ведут общественный образ жизни и даже способны к своеобразным проявлениям альтруизма. Если бы микробы не умели отличать своих от чужих, естественный отбор не смог бы развить у них социальное поведение и тем более альтруизм.

Генетические основы различения своих и чужих у бактерий изучены пока слабо, и каждое новое открытие в этой области привлекает к себе внимание. Так, недавно американские микробиологи расшифровали механизм взаимной идентификации у бактерии протея (Proteus mirabilis) (Gibbs et al., 2008). Этот микроб живет в пищеварительном тракте человека и обычно безвреден, но иногда вызывает инфекции мочевыводящей системы. Для протея характерно сложное социальное поведение, выражающееся, в частности, в согласованных передвижениях больших групп бактериальных клеток.

У протея есть свойство, делающее его удобным объектом для изучения механизмов различения своих и чужих. Когда две колонии, или стаи, Proteus mirabilis встречаются на поверхности питательной среды, происходит одно из двух: колонии либо сливаются, либо сохраняют самостоятельность. В последнем случае между ними образуется хорошо видимая граница. Выбор зависит от степени родства. Если обе стаи принадлежат к одному и тому же штамму, они, скорее всего, сольются; если к разным — между ними, скорее всего, возникнет граница.

Чтобы выяснить причины этого явления, исследователи заставили бактерии быстро мутировать и получили из одного предкового штамма 3600 мутантных штаммов-потомков. Среди них обнаружился один, который отказался смешиваться с другими мутантами и с предковым штаммом. Его назвали Ids (от слов identification of self — «самоидентификация»). Очевидно, в штамме Ids произошла мутация, заставившая этот штамм изменить свою самоидентификацию и начать воспринимать родительский штамм как чужой.

Ученые обнаружили два гена, определяющие «индивидуальность» бактерии. В этих генах есть вариабельные области, т. е. участки, сильно различающиеся у разных штаммов. Если в одном из этих генов происходит мутация, бактерии начинают считать чужаками своих сородичей, не имеющих такой мутации. Эти гены образуют уникальный генетический «паспорт», по которому штаммы различают друг друга. Еще три дополнительных гена, почти не

различающиеся у разных штаммов, нужны для того, чтобы этот «паспорт» мог быть должным образом представлен и опознан. Можно ли мутацию в «паспортном» гене назвать видообразованием? Вопрос спорный, однако ясно, что неспособность образовывать смешанные группы служит прямой дорогой к полной нескрещиваемости. А это главный критерий видообразования.

Привередливые дамы способствуют прогрессу

В изучении симпатрического видообразования теория отстала от практики: конкретные случаи удалось зарегистрировать и изучить, но с механизмами, заставляющими единую популяцию разделиться на две репродуктивно изолированные части, пока нет полной ясности. Чтобы симпатрическое видообразование утвердилось в науке в качестве полноправного эволюционного механизма, нужны хорошие математические модели, показывающие, как устроен этот процесс и от каких факторов он зависит.

Многие теоретики предполагали, что без полового отбора и избирательного скрещивания симпатрическое видообразование едва ли возможно. На первый взгляд кажется очевидным, что для симпатрического видообразования представители двух зарождающихся видов должны иметь разные половые предпочтения. Выше мы рассмотрели некоторые идеи, помогающие понять, как у особей в одной популяции могут развиться разные вкусы. Сандер ван Дорн из Бернского университета (Швейцария) и его коллеги из Гронингенского университета (Нидерланды) разработали модель, показывающую, что, даже если все самки в популяции имеют одинаковые половые предпочтения, их привередливость может радикально повысить вероятность симпатрического видообразования (van Doorn et al., 2009).

Размах чувствуется уже в названии статьи. Без ложной скромности авторы озаглавили ее «О происхождении видов путем естественного и полового отбора», что является повторением заглавия перевернувшей мир книги Дарвина, за исключением предпоследнего слова.

Суть модели в следующем. Допустим, существует популяция птиц с клювами средней длины. Местность, где они живут, состоит из участков двух типов. На одних участках преобладают растения с крупными семенами, на других — с мелкими. Для расклевывания крупных семян удобнее иметь длинный клюв, для мелких — короткий. В такой ситуации может начаться дизруптивный отбор. Это значит, что преимущество получат птицы с более длинными или более короткими клювами, но не с промежуточными. Известно, что у реальных птиц, попавших в подобные условия, может произойти симпатрическое видообразование [82] . Остается только понять, как видам удается разделиться, если их представители, перелетая с участка на участок, то и дело встречаются друг с другом и никто не мешает им образовывать смешанные пары и производить гибридное потомство с промежуточными по длине клювами.

82

Один из примеров описан в книге «Рождение сложности» на с. 333. На двух островках архипелага Тристан-да-Кунья один и тот же предковый вид вьюрков параллельно и независимо разделился на два вида (так что всего получилось четыре). На каждом острове теперь живет один вид с большим, другой с маленьким клювом — в соответствии с двумя видами кормовых растений, которые там растут. Мелкоклювые виды приспособились к питанию мелкими семенами, крупноклювые специализировались на крупных.

В модели все птицы изначально имеют одинаковые клювы средней длины, у самцов нет индикаторов приспособленности, а у самок — избирательности при выборе партнера, поэтому скрещивания происходят случайным образом. Все признаки могут меняться в результате мутаций. Взрослые птицы живут на своих участках, молодые могут мигрировать на другие участки. Специальная переменная задает интенсивность миграций. На участках с крупными семенами лучше себя чувствуют особи с большими клювами, и наоборот. Птица, которая лучше питается, имеет больше шансов дожить до зрелости. Кроме того, ее организм располагает большим количеством ресурсов. Самцы в результате мутаций могут приобрести способность направлять часть этих ресурсов на формирование красного оперения, которое служит индикатором приспособленности. Самки могут (тоже в результате мутаций) приобрести способность выбирать самцов по этому внешнему признаку хорошего здоровья.

Поделиться с друзьями: