Чтение онлайн

ЖАНРЫ

Фейнмановские лекции по физике. 3. Излучение. Волны. Кванты
Шрифт:

(27.13)

Из треугольников SWR и QXR получаем

(27.14)

Разрешая оба равенства относительно y'Ѕy, находим

(27.15)

Оно гораздо изящнее формулы (27.12). Мы рекомендуем чита­телю доказать, что при s=x+f и s' =x'+f равенства (27.12) и (27.16) совпадают.

§ 5. Сложные линзы

Опишем кратко без вывода основные свойства системы линз. Как исследуют систему нескольких линз? Очень просто. Начнем с некоторого объекта и определим его изображение, даваемое первой линзой, пользуясь формулами (27.16), (27.12) или любой эквивалентной формулой или, наконец, изобразив все это графи­чески. Итак, мы получим первое

изображение. Затем мы будем рассматривать это изображение как источник для следующей линзы и, чтобы найти новое изображение, воспользуемся второй линзой с любой заданной фокусной длиной. Проделаем такую процедуру последовательно для всей системы линз. Вот и все. В принципе здесь нет ничего нового, поэтому мы не будем вхо­дить в подробности. Однако очень интересный результат полу­чается, когда свет входит и выходит из системы линз в одну и ту же среду, например в воздух. Любое оптическое устройство — будь то телескоп или микроскоп с произвольным количеством линз и зеркал — обладает следующим интересным свойством. Имеются две плоскости, называемые главными плоскостями системы (часто они расположены поблизости от внешних поверх­ностей первой и последней линзы), которые обладают следую­щими свойствами: 1) свет, входящий параллельным пучком с одной стороны, собирается с другой стороны в фокус, отстоящий от второй главной плоскости на фокусное расстояние (как будто вместо системы имеется тонкая линза, совпадающая со второй главной плоскостью); 2) свет, входящий параллельным пучком с другой стороны, собирается в фокус на расстоянии / от первой главной плоскости, как будто там опять-таки находится тонкая линза (фиг. 27.8).

Само собой разумеется, если определить, как и раньше, рас­стояние х, х' и у, у', то формула (27.16) для тонкой линзы будет применима и в этом общем случае, только фокусные расстояния нужно отсчитывать от главных плоскостей, а не от центра линзы. Для тонкой линзы главные плоскости совпадают. Получается так, как если бы мы взяли тонкую линзу, разрезали её на дольки и разнесли их на некоторое расстояние, а в результате ничего не изменилось. Каждый входящий луч немедленно выскакивает по другую сторону от второй плоскости! Главные плоскости и фокусные расстояния находят либо вычислением, либо опытным путем; этим исчерпывается описание свойств оптической системы.

Фиг. 27.8. Главные плоскости оптической системы.

Весьма интересно, что результат для большой и сложной оптической системы оказался таким простым,

§ 6. Аберрация

Пока вы еще не успели прийти в восхищение от такой вели­колепной штуки, как линза, я должен успеть сказать об ее серьезных недостатках, которые мы не могли заметить раньше, поскольку ограничились рассмотрением параксиальных лучей. Реальная линза обладает конечной толщиной и, вообще говоря, обнаруживает свойства аберрации. Например, луч, направлен­ный вдоль оси, обязательно пройдет через фокус. Луч, близкий к оси, будет еще проходить через фокус, но более далекие лучи начнут от него отклоняться: близкие ненамного, а крайний луч уже на большое расстояние. В результате вместо точечного изоб­ражения получается расплывчатое пятно. Этот эффект называет­ся сферической аберрацией, потому что он возникает в резуль­тате использования сферических поверхностей вместо поверх­ностей правильной формы. Для каждого данного расстояния от объекта до линзы эффект аберрации можно устранить, изменив форму линзы или взяв несколько линз с таким расчетом, чтобы аберрации отдельных линз взаимно уничтожались.

Линзы страдают еще одним недостатком: свет разного цвета имеет разную скорость, т. е. разные показатели преломления в стекле, а поэтому фокусное расстояние для разных цветов раз­ное. Изображение белого пятна получается цветным, так как, когда в фокусе красный цвет, синий оказывается вне фокуса, и наоборот. Это явление называется хроматической аберрацией.

Бывают и другие искажения. Если объект находится не на оси, то добиться четкого фокуса невозможно. Легче всего это проверить, наклонив наведенную на фокус линзу так, чтобы в нее попадали лучи под большим углом к оси. Тогда изобра­жение сильно расплывется и может случиться, что ни одного четко сфокусированного места не останется. Таким образом, линзы страдают рядом искажений, и обычно оптик-конструктор старается их выправить, соединяя по нескольку линз, с тем что­бы скомпенсировать искажения отдельных линз.

До какого предела можно устранить аберрации? Можно ли создать совершенную оптическую систему? Допустим, что мы сумели построить оптическую систему, фокусирующую свет точно в одну точку. Можем ли мы теперь найти требования (с точ­ки зрения принципа Ферма), которым должна удовлетворять наша система? Система всегда имеет отверстие конечных разме­ров, в которое входит свет. Для совершенной системы время про­хождения любого, как угодно удаленного от оптической оси луча одинаково. Но абсолютного совершенства не бывает, поэтому поставим вопрос: каков разумный предел точности совпадения всех времен? Это зависит от того, насколько совершенное изоб­ражение мы хотим иметь. Предположим, что мы хотим, чтобы оно было настолько совершенным, насколько это вообще воз­можно. Тогда с

первого взгляда кажется, что и времена прохож­дения всех лучей нужно уравнять с максимальной точностью. На самом деле это не так; существует некий предел, за которым всякое уточнение бессмысленно, потому что приближение геомет­рической оптики перестает работать!

Вспомним, что принцип наименьшего времени, в отличие от закона сохранения энергии и импульса, не есть точный принцип, а лишь некоторое приближение. И поэтому интересно устано­вить, какие ошибки допустимы в пределах точности этого при­ближения. Ответ: не имеет смысла требовать равенства времен прохождения лучей (скажем, в худшем случае луча вдоль оси и наиболее удаленного от оси) с точностью, превышающей период колебания света Свет есть колебательный процесс с определенной частотой, которая связана с длиной волны, и если мы добились, что времена прохождения лучей отличаются на величину, меньшую или порядка периода колебаний, то дальше уравнивать времена бесполезно. .

§ 7. Разрешающая способность

Еще один интересный вопрос, очень важный с технической точки зрения! какова разрешающая способность оптических приборов? Когда мы создаем микроскоп, мы хотим целиком ви­деть тот объект, который находится в поле нашего зрения. Это означает, например, что, глядя на бактерию, на боках которой имеются два пятнышка, мы хотим различить оба пятнышка на увеличенном изображении. Могут подумать, что для этого нужно только получить достаточное увеличение, ведь всегда можно добавить еще линзы и достичь большего увеличения, а если конструктор ловкий, то он устранит сферические и хромати­ческие аберрации; вот вроде бы и нет причин, почему бы не увеличить желаемое изображение до любых размеров. Но предел возможностей микроскопа связан не с тем, что невозможно до­биться увеличения более чем в 2000 раз. Можно построить сис­тему линз, увеличивающую в 10 000 раз, и все же не увидеть те два пятнышка, расположенные так близко одно к другому, и не увидим мы их из-за ограниченности возможностей геометриче­ской оптики и неточности принципа наименьшего времени.

Сравнивая время прохождения равных лучей, можно краси­вым способом вывести правило, определяющее расстояние между двумя точками, при котором эти точки еще различаются на изо­бражении. Отвлечемся пока от аберраций и пусть все лучи от некоторой точки Р (фиг. 27.9) проходят до изображения Т за одно и то же время (такого быть не может, поскольку система несовершенна, но это уже к данному вопросу не относится).

Фиг. 27.9. Разрешающая спо­собность оптической системы.

Возьмем еще одну близлежащую точку Р' и посмотрим, разли­чаются ли их изображения. Другими словами, сможем ли мы различить оба изображения? Конечно, согласно геометриче­ской оптике, должно быть два изображения, но то, что мы уви­дим, может оказаться весьма расплывчатым, и нам не удастся разобрать, что точек две. Требование, чтобы вторая точка давала изображение, отличное от первого, сводится к следующему ус­ловию: времена прохождения двух крайних лучей P'ST и Р'RТ от точки Р' до изображения первой точки Т должны быть раз­ными. Почему? Потому что при равных временах свет от Р' сфокусировался бы в Т, т. е. изображения совпали бы. Итак времена должны быть разными. Но насколько они должны от­личаться, чтобы мы сказали, что они имеют разные фокусы, и обе точки на изображении различимы? Разрешающая способ­ность любого оптического устройства определяется следующим правилом: изображения двух точечных источников могут быть различимы, если только времена прохождения крайних лучей от одного источника к изображению второго отличаются от вре­мени прохождения к собственному изображению более чем на один период. Для этого необходимо, чтобы разность времен про­хождения верхнего и нижнего крайних лучей к чужому изобра­жению была больше некоторой величины, примерно равной пе­риоду колебания световой волны:

(27.17)

где v — частота света (число колебаний в секунду, или скорость света, деленная на длину волны). Обозначим расстояние между точками через D, а половину угла, под которым видна линза из точки Р, через q; тогда (27.17) равносильно утверж­дению, что D больше (l/n)sinq, где n — показатель преломления в точке Р, а l, — длина волны. Отсюда размеры самого малого объекта, который мы можем увидеть, оказываются порядка длины волны света. Для телескопов тоже имеется такая форму­ла; она определяет наименьшую разность углов (угловое рас­стояние) между двумя звездами, при которой их еще можно от­личить друг от друга.

*Предельный угол имеет величину порядка l/D, где D — диаметр линзы. Сможете ли вы показать, как это получается?

Глава 28

ЭЛЕКТРОМАГНИТНОЕ ИЗЛУЧЕНИЕ

§ 1. Электромаг­нетизм

§ 2. Излучение

§ 3. Дипольный излучатель

§ 4. Интерференция

Поделиться с друзьями: