Фейнмановские лекции по физике. 7. Физика сплошных сред
Шрифт:
В обычных «трансформаторах» на одном и том же торе, или сердечнике, из магнитного материала намотаны две катушки. (В больших трансформаторах сердечник для удобства делается прямоугольным.) При этом изменение тока в «первичной» обмотке вызывает изменение поля в сердечнике, которое индуцируется э.д.с. во «вторичной» обмотке. Поскольку поток через каждый виток обеих обмоток один и тот же, то величина отношения э.д.с. в этих двух обмотках такая же, как отношение числа витков в каждой из них. Напряжение, приложенное к первичной обмотке, преобразуется во вторичной в напряжение другой величины. А поскольку для создания требуемых изменений магнитного поля необходим определенный полный ток, то алгебраическая сумма токов в двух обмотках должна оставаться постоянной и равной требуемому «намагничивающему» току. При изменении напряжения изменяется
§ 5. Электромагниты
Поговорим теперь о практической стороне дела, которая немного более сложна. Предположим, что мы имеем электромагнит стандартной формы, изображенный на фиг. 36.10.
Фиг. 36.10. Электромагнит.
Он состоит из С-образного железного ярма, на которое намотано много витков провода. Чему равно магнитное поле В в зазоре?
Если ширина зазора мала по сравнению со всеми другими размерами, то в качестве первого приближения мы можем считать, что линии В образуют замкнутые кривые так же, как это происходит и в обычном торе. Они выглядят примерно так, как показано на фиг. 36.11,а.
Фиг. 36.11. Поперечное сечение электромагнита.
Они стремятся вылезть из зазора, но если он узок, то эффект этот очень мал. Предположение о постоянстве потока В через любое поперечное сечение ярма будет довольно хорошим приближением. Если поперечное сечение ярма меняется равномерно и если мы пренебрежем любыми краевыми эффектами на зазоре или на углах, то можно говорить, что по всей окружности ярма В однородно.
Поле В в зазоре будет по величине тем же самым. Это следует из уравнений (36.16). Представьте себе замкнутую поверхность S (см. фиг. 36.11,б), одна грань которой находится в зазоре, а другая — в железе. Полный поток поля В через эту поверхность должен быть равен нулю. Обозначая через В1 величину поля в зазоре, а через B2 — величину поля в железе, мы видим, что
B 1 A 1 – В 2 А 2 =0,
а поскольку А1=А2, то отсюда следует, что В1=В2.
Посмотрим теперь на Н. Мы снова можем воспользоваться уравнением (36.19), взяв криволинейный интеграл по контуру Г (см. фиг. 36.11,6). Как и прежде, правая часть равна NI— произведению числа витков на ток. Однако теперь Н в железе и в воздухе будет различным. Обозначая через Н2поле в железе, а через l2 — Длину пути по окружности ярма, мы видим, что эта часть кривой дает вклад в интеграл H2l2. Если же поле в зазоре равно Н1, а ширина его l1, то вклад зазора оказывается равным H1l1. Таким образом, получаем
Но
это еще не все. Нам известно еще, что намагниченность в воздушной щели пренебрежимо мала, так что B1=H1. А так как B1=B2, то уравнение (36.26) принимает вид
Остаются еще два неизвестных. Чтобы найти В2и H2, необходимо еще одно соотношение, которое связывает В с H в железе.
Если можно приближенно считать, что B2=mH2, то уравнение разрешается алгебраически. Рассмотрим более общий случай, для которого кривая намагничивания железа имеет вид, изображенный на фиг. 36.8. Единственное, что нам нужно,— это найти совместное решение этого функционального соотношения с уравнением (36.27). Его можно найти, строя зависимость (36.27) на одном графике с кривой намагничивания, как это сделано на фиг. 36.12. Точки, где эти кривые пересекутся, и будут нашими решениями.
Для данного тока I уравнение (36.27) описывается прямой линией, обозначенной I>0 на фиг. 36.12. Эта линия пересекает ось Н (B2=0) в точке H2=NI/e0c2l2и имеет наклон -l2/l1 Различные величины токов приводят просто к горизонтальному сдвигу этой линии. Из фиг. 36.12 мы видим, что при данном токе существует несколько различных решений, зависящих от того, каким образом вы получили их.
Фиг. 36.12. Определение поля в электромагните.
Если вы только что построили магнит и включили ток /, то поле B2 (которое равно B1) будет иметь величину, определяемую точкой а. Если вы сначала увеличили ток до очень большой величины, а затем понизили до I, то значение поля будет определяться точкой b. А если, увеличивая ток от большого отрицательного значения, вы дошли до /, то поле определяется точкой с. Поле в зазоре зависит от того, как вы поступали в прошлом.
Если ток в магните равен нулю, то соотношение между В2 и H2в уравнении (36.27) изображается кривой, обозначенной I=0 на фиг. 36.12. Здесь опять возможны различные решения. Если вы первоначально «насытили» железо, то в магните может сохраниться значительное остаточное поле, определяемое точкой d. Вы можете снять обмотку и получить постоянный магнит. Нетрудно понять, что для хорошего постоянного магнита необходим материал с широкой петлей гистерезиса. Такую очень широкую петлю имеют специальные сплавы, подобные Алнико V.
§ 6. Спонтанная намагниченность
Обратимся теперь к вопросу, почему в ферромагнитных материалах даже малые магнитные поля приводят к такой большой намагниченности. Намагниченность ферромагнитных материалов типа железа или никеля образуется благодаря магнитным моментам электронов одной из внутренних оболочек атома. Магнитный момент mкаждого электрона равен произведению q/2m на g-фактор и момент количества движения J. Для отдельного электрона при отсутствии чисто орбитального движения g=2, а компонента J в любом направлении, скажем, в направлении оси z, равна ±h/2, так что компонента m в направлении оси z будет