Фейнмановские лекции по физике. 9. Квантовая механика II
Шрифт:
* Можно выразить это и иначе. Какую бы функцию (т. е. состояние) вы ни выбрали, ее всегда можно представить в виде линейной комбинации базисных состояний, являющихся состояниями с определенной энергией. Поскольку в этой комбинации присутствует примесь состояний с более высокими энергиями, то средняя энергия окажется выше энергии основного состояния.
* Элемент объема мы обозначаем dОбъем. Он попросту равен dxdydz, а интеграл берется от -Ґ до +Ґ по всем трем координатам.
Глава 19
УРАВНЕНИЕ ШРЕДИНГЕРА В КЛАССИЧЕСКОМ КОНТЕКСТЕ.
СЕМИНАР ПО СВЕРХПРОВОДИМОСТИ
§ 1. Уравнение Шредингера в магнитном поле
§ 2. Уравнение непрерывности для вероятностей
§ 3.
§ 4. Смысл волновой функции
§ 5. Сверхпроводимость
§ 6. Явление Мейсснера
& 7. Квантование потока
§ 8. Динамика сверхпроводимости
§ 9. Переходы Джозефсона
§ 1. Уравнение Шредингера в магнитном поле
Эту лекцию я читаю вам для развлечения. Захотелось посмотреть, что получится, если начать читать в немного ином стиле. В курс она не входит, и не думайте, что это попытка обучить вас в последний час чему-то новому. Я скорее воображаю, будто провожу семинар или будто делаю отчет об исследованиях перед более подготовленной аудиторией, перед людьми, которые в квантовой механике уже многое понимают. Основное различие между семинаром и регулярной лекцией в том, что на семинаре докладчик не приводит все стадии, всю алгебру выкладок. Он просто говорит: «Если вы проделаете то-то и то-то, то получится вот что», а в детали не входит. Вот и в этой лекции будут только высказываться идеи и приводиться результаты расчетов. А вы должны понимать, что вовсе не обязательно во всем немедленно и до конца разбираться, надо только верить, что если проделать все выкладки, то все так и получится.
Но это не все. Главное — что об этом мне хочется говорить. Это такая свежая, актуальная, современная тема, что вполне законно вынести ее на семинар. Тема эта — классический аспект уравнения Шредингера, явление сверхпроводимости.
Обычно та волновая функция, которая появляется в уравнении Шредингера, относится только к одной или к двум частицам. И сама волновая функция классическим смыслом не обладает в отличие от электрического поля, или векторного потенциала, или других подобных вещей. Правда, волновая функция отдельной частицы — это «поле» в том смысле, что она есть функция положения, но классического значения она, вообще говоря, не имеет. Тем не менее бывают иногда обстоятельства, в которых квантовомеханическая волновая функция действительно имеет классическое значение, именно их я и хочу коснуться. Своеобразие квантовомеханического поведения вещества в мелких масштабах обычно не дает себя чувствовать в крупномасштабных явлениях, если не считать стандартных выводов о том, что оно вызывает к жизни законы Ньютона, законы так называемой классической механики. Но существуют порой обстоятельства, в которых особенности квантовой механики могут особым образом сказаться в крупномасштабных явлениях.
При низких температурах, когда энергия системы очень-очень сильно убывает, вместо прежнего громадного количества состояний в игру включается только очень-очень малое количество состояний — тех, которые расположены неподалеку от основного. При таких условиях квантовомеханический характер этого основного состояния может проявиться на макроскопическом уровне. Вот целью этой лекции и будет продемонстрировать связь между квантовой механикой и крупномасштабными эффектами — не обычное обсуждение пути, по которому квантовая механика в среднем воспроизводится ньютоновой механикой, а специальный случай, когда квантовая механика вызывает свои собственные, характерные для нее эффекты в крупных, «макроскопических» размерах.
Начну с того, что напомню вам кое-какие свойства уравнения Шредингера. Я хочу с помощью уравнения Шредингера описать поведение частицы в магнитном поле, потому что явления сверхпроводимости связаны с магнитными полями. Внешнее магнитное поле описывается векторным потенциалом, и вопрос состоит в том, каковы законы квантовой механики в поле векторного потенциала. Принцип, определяющий квантовомеханическое поведение частицы в поле векторного потенциала, очень прост.
Фиг. 19.1. Амплитуда перехода из а в b по пути r пропорциональна
Амплитуда того, что частица при наличии поля перейдет по некоторому пути из одного места в другое (фиг. 19.1), равна амплитуде того, что она прошла бы по этому пути без поля, умноженной на экспоненту от криволинейного интеграла от векторного потенциала, умноженного в свою очередь на электрический заряд и деленного на постоянную Планка [см. гл. 15, § 2 (вып. 6)]:
Это исходное утверждение квантовой механики.
И вот в отсутствие векторного потенциала уравнение Шредингера для заряженной частицы (нерелятивистской, без спина) имеет вид
где j — электрический потенциал, так что qj — потенциальная энергия.
А уравнение (19.1) равнозначно утверждению, что в магнитном поле градиенты в гамильтониане нужнокаждый раз заменять на градиент минус (iq/h)А, так что (19.2) превращается в
Это и есть уравнение Шредингера для частицы с зарядом q (нерелятивистской, без спина), движущейся в электромагнитном поле А, j.
Чтобы стало ясно, что оно правильно, я хочу проиллюстрировать это простым примером, когда вместо непрерывного случая имеется линия атомов, расставленных на оси x на расстоянии b друг от друга, и существует амплитуда —К того, что электрон перепрыгнет в отсутствие поля от одного атома к другому. Тогда, согласно уравнению (19.1), если имеется вектор-потенциал Аx(х, t) в x– направлении, то амплитуда перескока по сравнению с тем, что было раньше, изменится, ее придется домножить на exp[(iq/h)Axb] — экспоненту с показателем, равным произведению iq/h на векторный потенциал, проинтегрированный от одного атома до другого. Для простоты мы будем писать (q/h) Axєf(x), поскольку Ах, вообще говоря, зависит от х. Если обозначить через С(х)єСnамплитуду того, что электрон обнаружится возле атома n, расположенного в точке х, то скорость изменения этой амплитуды будет даваться уравнением
В нем три части. Во-первых, у электрона, который находится в точке х, есть некоторая энергия Е0. Это, как обычно, дает член Е0С(х). Затем имеется член — КС(х+b), т. е. амплитуда того, что электрон от атома n+1, расположенного в х+b, отпрыгнул на шаг назад. Однако если это происходит в присутствии векторного потенциала, то фаза амплитуды обязана сместиться согласно правилу (19.1). Если Ахна расстоянии между соседними атомами заметно не изменяется, то интеграл можно записать попросту в виде значения Ахпосредине, умноженного на расстояние. Итак, произведение (iq/h) на интеграл равно ibf(x+b/2). А раз электрон прыгал назад, я этот сдвиг фазы отмечаю знаком минус. Это дает вторую часть. И точно так же имеется некоторая амплитуда того, что будет прыжок вперед, но на этот раз уже берется векторный потенциал с другой стороны от х, на расстоянии b/2, и умножается на расстояние b. Это дает третью часть. В сумме получается уравнение для амплитуды того, что частица в поле, характеризуемом векторным потенциалом, окажется в точке х.
Но дальше мы знаем, что если функция С(х)достаточно плавная (мы берем длинноволновый предел) и если мы сдвинем атомы потеснее, то уравнение (14.4) (стр. 80) будет приблизительно описывать поведение электрона в пустоте. Поэтому следующим шагом явится разложение обеих сторон (19.4) по степеням b, считая b очень малым. К примеру, если b=0, то правая часть будет равна просто (Е0– 2К)С(х), так что в нулевом приближении энергия равняется Е0– 2К. Затем пойдут степени b, но из-за того, что знаки показателей экспонент противоположны, останутся только четные степени. В итоге, если вы разложите в ряд Тэйлора С(х), f(x) и экспоненты и соберете затем члены с b2, вы получите