Чтение онлайн

ЖАНРЫ

Физика: Парадоксальная механика в вопросах и ответах
Шрифт:

Однако из практики известно, что тело рано или поздно все равно остановится, причем не исключено, что оно может сдвинуться и назад. В чем же здесь дело? А в том, что, во-первых, при чрезвычайно малых скоростях движения закон сопротивления может измениться. Во-вторых, могут измениться свойства жидкости – она может остыть и замерзнуть, покрыться тиной и т. д. Тогда будет действовать какой-то новый закон сопротивления движению тела. Но он нам не задан, а согласно принятому закону сопротивления (4.26), тело будет двигаться уже описанным образом.

Интересно определить путь, который пройдет тело до остановки. Можно предположить, что если тело никогда не остановится, то и пройденный им путь за бесконечно большое время будет тоже бесконечно большим.

Проверим

и это. Применим уже известную нам формальную подстановку (см. вопрос 4.8) и составим дифференциальное уравнение движения в виде:

Сокращая обе части его на v, разделяя переменные и учитывая, что при х = v = v0, имеем:

Интегрируя, получаем:

откуда:

или при v = 0:

То есть получаем вполне конкретное значение пути. Например, при массе тела 100 кг, скорости v0 = 1 м/с и ? = 10 кг/с (средний коэффициент сопротивления для обычной лодки), получаем путь движения до остановки х = 10 м. Если проверять эту задачу экспериментально, то так примерно оно и получится. Хоть движение и «вечное», а вот пройденный путь вполне конечен.

Вот к каким неожиданным выводам приводит иногда механика!

4.10. Вопрос. Что такое трение качения?

Ответ. Казалось бы, такое обыденное явление – трение при качении, а ответа – что это такое, по крайней мере, поясняющего сущность вопроса, в школьных учебниках нет. Даже для школ с углубленным изучением физики. Про теорию относительности – есть, а про трение качения, встречающееся, буквально, на каждом шагу – нет. И, может быть, это к лучшему, потому что даже в вузовских учебниках по физике, где рассматривается этот вопрос, ясности все-таки нет. А ведь трение качения – очень важный для техники вопрос, оно обнаруживает себя в любом колесном транспорте, начиная от велосипеда и роликовых коньков и заканчивая многотонными тягачами и поездами, а кроме того, в механических передачах, подшипниках качения и во многих других случаях.

Между тем, объяснить хотя бы в первом приближении – что это такое, не так уж сложно. И одним из этих приближений будет то, что опорную поверхность или дорогу, по которой катится колесо, будем считать абсолютно твердой. Второе допущение, которое совершенно реально: опорная поверхность и поверхность колеса обладают трением скольжения, предельное значение которого превышает максимальное сопротивление качению колеса. Короче говоря, при приложении к оси колеса силы, оно будет катиться, а не скользить «юзом» по дороге. Иногда говорят, что рассматриваемые поверхности «шероховаты», но это недостаточно точно отражает суть вопроса. Трудно представить себе, например, что-нибудь более гладкое, чем зеркальная рабочая поверхность плиток Иогансона, применяющихся для точных измерений расстояний в качестве эталонов длины, но попробуйте сдвинуть одну такую плитку по другой!

А теперь поставим колесо на дорогу, приложим к нему силу тяжести G, нормальную силу со стороны дороги N и будем толкать колесо силой Р, приложенной горизонтально к оси, пытаясь его покатить. Мешает ли нам

теоретически что-нибудь это сделать? Нет, все силы пересекаются в точке выхода оси колеса, и моменты, создающие сопротивление качению, не могут образоваться (рис. 22).

Рис. 22. Схема сил, действующих при качении абсолютно твердого колеса по абсолютно твердой дороге.

Получается парадокс – выходит, при качении нет никакого сопротивления? Но заметьте, что мы совершенно не учли деформацию колеса, оно у нас как бы «абсолютно твердое», тверже алмаза. Тогда, конечно, сопротивления качению быть не может, с учетом того, что дорогу мы уже приняли абсолютно твердой. Поэтому, чтобы уменьшить сопротивление трению качения, колёса и железную дорогу делают из очень твердых материалов (не из алмаза, конечно, но из термообработанной стали с наклепом – очень твердого материала). Железнодорожные колеса, катящиеся по рельсам, имеют сопротивление качению во много раз меньше, чем «мягкие» автомобильные колеса.

Что же происходит с «мягким» колесом при его качении? В контакте с дорогой его немного расплющивает, и из-за гистерезисных потерь (перехода части механической энергии, затраченной на деформацию, в тепло, что всегда имеет место в реальных материалах) сила давления на колесо со стороны дороги N немного смещается вперед по движению (рис. 23). Появляется плечо силы а, то есть момент, который надо преодолевать, а значит, и трение качения. Чем больше диаметр колеса и чем тверже оно (при твердой дороге), тем меньше оно сопротивляется качению. Вот почему у некоторых вездеходов колеса такие большие (до 17 м диаметром), а у поездов и трамваев они такие твердые.

Рис. 23. Схема сил, действующих на реальное колесо, катящееся по абсолютно твердой дороге.

А вот легковому автомобилю нельзя «позволить себе» ни того, ни другого. Если колеса будут слишком большими, автомобиль утратит мобильность, комфортабельность, эргономичность и эстетичность, а кроме того, станет слишком тяжелым. Ну, а твердые колеса будут резать асфальт, как сошедший с рельсов трамвай, да и тряска при движении станет непереносимой – мягкие шины демпфируют колебания от неровностей дороги. Вот и приходится идти на технические компромиссы.

И еще одно обстоятельство, которое вызывает недоумение у каждого, кто пытается проанализировать качение упругого колеса по твердой дороге. Нижняя часть колеса расплющивается, и ее длина становится меньше соответствующей дуги недеформированного колеса. Зная, что окружная скорость точки на ободе шины равна произведению угловой скорости колеса на радиус колеса, мы видим, что этот радиус в точке контакта с дорогой меньше, чем рядом, где колесо не касается дороги. Получается, что окружная скорость разных точек колеса – различная? Если у одной и той же шины скорость в разных точках различная, то это означает или разрыв шины, или напротив – ее сжатие.

Именно сжатие и происходит в контакте колеса с дорогой – упругая поверхность шины сжимается, проскальзывает к центру зоны контакта, а при выходе из контакта происходит обратная картина. В передней зоне контакта колеса с дорогой силы трения скольжения при проскальзывании действуют со стороны дороги на колесо назад по движению, а в задней зоне их действие противоположно. Кроме того, что это скольжение создает потери (переход механической энергии в тепло), увеличивающие сопротивление качению, силы эти играют еще одну отрицательную роль. В передней зоне контакта, где давление выше из-за смещения вперед силы N, эти силы больше, чем в задней. И это, в свою очередь, опять же повышает сопротивление качению колеса.

Поделиться с друзьями: