Фундаментальные алгоритмы и структуры данных в Delphi
Шрифт:
Этот процесс нужно продолжать до тех пор, пока элементы в сортирующем дереве не иссякнут. В результате мы получаем элементы исходного массива, но теперь они оказываются отсортированными.
Полный код подпрограммы пирамидальной сортировки, реализованной так же, как были реализованы все процедуры сортировки в главе 5, приведен листинге 9.8.
Листинг 9.8. Алгоритм пирамидальной сортировки
procedure HSTrickleDown( aList : PPointerList; aFromInx : integer;
aCount : integer; aCompare : TtdCompareFunc );
var
Item : pointer;
ChildInx : integer;
ParentInx: integer;
begin
{вначале необходимо выполнить простую
Item := aList^[aFromInx];
ChildInx := (aFromInx * 2) + 1;
while (ChildInx < aCount) do
begin
if (suce(ChildInx) < aCount) and
(aCompare(aList^[ChildInx], aList^[suce(ChildInx)]) < 0) then
inc(ChildInx);
aList^[aFromInx] := aList^[ChildInx];
aFromInx := ChildInx;
ChildInx := (aFromInx * 2) + 1;
end;
{теперь из позиции, в которой был прекращен предыдущий процесс, необходимо выполнить операцию пузырькового подъема}
ParentInx := (aFromInx - 1) div 2;
while (aFromInx > 0) and (aCompare (Item, aList^[ParentInx] ) > 0) do
begin
aList^[aFromInx] := aList^[ParentInx];
aFromInx := ParentInx;
ParentInx := (aFromInx - 1) div 2;
end;
{сохранить элемент в той позиции, где был прекращен процесс пузырькового подъема}
aList^[aFromInx] := Item;
end;
procedure HSTrickleDownStd( aList : PPointerList;
aFromInx : integer;
aCount : integer;
aCompare : TtdCompareFunc );
var
Item : pointer;
ChildInx : integer;
begin
Item := aList^[aFromInx];
ChildInx := (aFromInx * 2) + 1;
while (ChildInx < aCount) do
begin
if (succ(ChildInx) < aCount) and
(aCompare(aList^[ChildInx], aList^[succ(ChildInx)]) < 0) then
inc(ChildInx);
if aCompare(Item, aList^[ChildInx]) >= 0 then
Break;
aList^[aFromInx] := aList^[ChildInx];
aFromInx := ChildInx;
ChildInx := (aFromInx * 2) + 1;
end;
aList^[aFromInx] := Item;
end;
procedure TDHeapSort( aList : TList; aFirst : integer;
aLast : integer; aCompare : TtdCompareFunc );
var
ItemCount : integer;
Inx : integer;
Temp : pointer;
begin
TDValidateListRange(aList, aFirst, aLast, 'TDHeapSort');
{преобразовать список за счет применения алгоритма пирамидальной сортировки Флойда}
ItemCount := aLast - aFirst + 1;
for Inx := pred( ItemCount div 2) downto 0 do
HSTrickleDownStd(@aList.List^[aFirst], Inx, ItemCount, aCompare);
{удаление элементов из сортирующего дерева по одному, с помещением их в конец массива}
for Inx := pred( ItemCount) downto 0 do
begin
Temp := aList.List^[aFirst];
aList.List^[aFirst] := aList.List^[aFirst+Inx];
aList.List^ [aFirst+Inx] :=Temp;
HSTrickleDown(@aList.List^[aFirst], 0, Inx, aCompare);
end;
end;
Обратите внимание, что на первом этапе, при создании сортирующего дерева из массива, мы использовали стандартный алгоритм просачивания (алгоритм Флойда), но на втором этапе (при удалении наибольшего элемента из постоянно уменьшающегося сортирующего дерева) был применен оптимизированный алгоритм просачивания Флойда. На первом этапе мы ничего не знали о распределении элементов в массиве, поэтому имело смысл просто применить стандартный алгоритм просачивания - в конце концов, в целом алгоритм Флойда является операцией типа O(n). Однако на втором этапе мы знаем,
что меняем местами наибольший элемент и один из наименьших элементов. Поэтому в целесообразно осуществить оптимизацию.До сих пор не был пояснен один момент. Если в качестве очереди по приоритету используется сортирующее дерево, отсортированное выбором максимального элемента, извлечение элементов будет выполняться в обратном порядке - начиная с наибольшего и заканчивая наименьшим. Однако если сортирующее дерево, отсортированная выбором максимального элемента, используется для пирамидальной сортировки, элементы будут отсортированы в порядке возрастания, а не в обратном порядке. При использовании кучи, отсортированной выбором минимального элемента, элементы будут удаляться в порядке возрастания, но пирамидальная сортировка будет выполняться в порядке убывания.
Важность алгоритма пирамидальной сортировки обусловлена целым рядом причин. Во-первых, время его выполнения определяется отношением O(n log(n)), следовательно, он работает достаточно быстро. Во-вторых, пирамидальная сортировка не имеет худшего случая. Сравним ее с быстрой сортировкой. В общем случае, как правило, быстрая сортировка выполняется быстрее пирамидальной (для выполнения пирамидальной сортировки потребуется выполнение большего количества операций сравнения, чем для быстрой сортировки, а внутренний цикл пирамидальной сортировки длится дольше, чем цикл быстрой сортировки). Но при выполнении быстрой сортировки возможны случаи, когда все ее преимущества сводятся буквально на нет, делая ее чрезвычайно медленной. (В худшем случае время выполнения этого алгоритма может определяться отношением O(n(^2^)), если только не будут приняты определенные меры по оптимизации алгоритма.) Если же сравнить пирамидальную сортировку с сортировкой слиянием, то мы видим, что эта сортировка выполняется на месте и не требует большого дополнительного объема памяти, как имеет место при выполнении сортировки слиянием. В заключение приходится признать, что алгоритм пирамидальной сортировки не очень устойчив.
Исходный код процедуры TDHeapSort и вспомогательных процедур можно найти на web-сайте издательства, в разделе материалов. После выгрузки материалов отыщите среди них файл TDSorts.pas.
Расширение очереди по приоритету
Сделав небольшое отступление для ознакомления с пирамидальной сортировкой, пора вернуться к очередям по приоритету и рассмотреть задачу расширения реализованной нами структуры данных.
Мы разработали структуру данных, позволяющую выполнять две основные операции: постановку в очередь, обеспечивающую добавление элемента в структуру, и исключение из очереди, которая возвращает элемент структуры с наивысшим приоритетом (попутно мы рассмотрели определение приоритета за счет использования внешней функции сравнения). Полученную структуру мы назвали очередью по приоритету.
Однако структуры операционных систем, такие как очереди по приоритету потоков или очереди на печать, позволяют выполнять еще две операции: удалять элемент из очереди и возвращать его, независимо от позиции в очереди (элемент не обязательно должен быть наибольшим), а также изменять приоритет любого элемента в очереди.
При работе с очередью на печать операция удаления позволяет отменять задание на печать документа, печать которого больше не требуется, или удалять печатное задание из одной очереди и включать его в другую (например, если принтер, связанный с первой очередью, занят печатью крупного отчета). При работе с очередью по приоритету потоков можно временно повысить приоритет потока для повышения вероятности возобновления выполнения, когда операционная система в следующий раз решит изменить очередность обработки потоков.