Генетическая лотерея
Шрифт:
Большинство генетических заболеваний являются редкими, что мешает эффективному и экономически выгодному процессу разработки и вывода на рынок лекарственных препаратов для лечения, направленного на конкретную «поломку», без государственных дотаций.
Стоимость существующих лекарственных препаратов для лечения некоторых генетических заболеваний составляет сотни тысяч долларов США за один курс, что дополнительно создает проблему недоступности препаратов даже для заболеваний, которые технически можно лечить.
В этой главе мы разберем несколько примеров наиболее известных врожденных генетических заболеваний и механизмов борьбы с ними (как одобренных регуляторами, так и находящихся в стадии клинических исследований), которые в общем смысле можно распространить на многие другие генетические заболевания.
Спинальная
СМА – это нейромышечное заболевание, приводящие к потере функций двигательных нейронов в определенных отделах спинного мозга и мышечной атрофии. Выделяют несколько типов СМА в зависимости от возраста человека в момент появления симптомов и степени выраженности этих симптомов, однако самые распространенные типы СМА дают о себе знать до трехлетнего возраста и приводят к смерти до половой зрелости при отсутствии лечения.
Рис. 4. Наследование спинальной мышечной атрофии.
Механизм развития СМА заключается в следующем: ДНК человека содержит ген SMN1, необходимый для функционирования моторных нейронов спинного мозга. Процесс синтеза белка, если упрощенно, состоит из двух этапов: транскрипции и трансляции. Транскрипция – это процесс синтеза мРНК (матричной РНК, messenger RNA) на базе ДНК. Трансляция – процесс синтеза белка на базе мРНК. В случае с СМА проблема кроется в механизмах транскрипции, а именно сплайсинге.
Дело в том, что почти любой ген на ДНК намного длиннее мРНК, которая транскрибируется с этого гена, вследствие наличия в ДНК интронов и экзонов. Экзоны – это участки ДНК внутри гена, кодирующие значимую последовательность для синтеза белка, и именно последовательности экзонов содержатся в мРНК. Интроны, напротив, не содержатся в мРНК и содержат незначимые непосредственно для структуры белка последовательности. Сплайсинг – это процесс вырезания интронов при созревании мРНК и соединения в нужном порядке оставшихся экзонов. На концах интронов есть специальные короткие нуклеотидные последовательности – сайты сплайсинга, маркирующие места разрыва и определяющие границы последовательности, которую нужно вырезать из мРНК. Замена нуклеотидов в таких сайтах ведет к нарушению сплайсинга и потере одного или нескольких экзонов из мРНК, что, в свою очередь, приводит к трансляции нефункционального «обрезанного» белка.
В геноме человека есть два гена, кодирующих один и тот же белок SMN, необходимый для выживания моторных нейроном спинного мозга, – SMN1 и SMN2. Любой индивидуум с диагностированной СМА в подавляющем большинстве случаев не имеет гена SMN1 вследствие его полной делеции, то есть удаления большого участка ДНК, содержащего в себе ген SMN1. В то же время ген SMN2 продолжает работать, однако обычно он несет в себе генетическую вариацию в одном из сайтов сплайсинга, приводящую к удалению 7 экзона гена SMN2 из мРНК, что приводит к синтезу нефункционального белка SMN (рис. 5).
Два из трех существующих на данный момент лекарственных препарата для лечения СМА способны изменять механизм сплайсинга в необходимом участке гена SMN2 для того, чтобы 7 экзон не удалялся из мРНК и нейроны были способны синтезировать полностью функциональный ген SMN. Это препараты SPINRAZA® (одобрен Управлением по санитарному надзору за качеством пищевых продуктов и медикаментов США в 2016, Европейским агентством лекарственных средств в 2017 и Министерством здравоохранения РФ в 2019) и EVRYSDI® (одобрен в США и России в 2020, в Европе в 2021). Третий препарат – ZOLGENSMA® – является генотерапевтической векторной системой, в которой в качестве вектора (доставщика) используется определенный серотип аденоассоциированного вируса (AAV), несущего в себе полностью функциональный ген SMN1.
Рис. 5. Генетическая основа развития спинальной мышечной атрофии.
AAV являются частым инструментом таргетной доставки генетического материала, так как разные серотипы вируса (как оригинальные, так и химерные – сочетают в себе свойства разных серотипов) специфичны к определенной ткани и могут таргетно проникать в определенные клетки. Более того, используемые для генной терапии AAV не способны реплицироваться в клетках человека и не встраивают генетический материал в геном человека. В случае препарата ZOLGENSMA® полностью функциональный ген SMN1 доставляется в нейроны вирусом и в течение некоторого продолжительного времени может транскрибироваться и транслироваться, восстанавливая функцию моторных нейронов спинного мозга (рис. 6).
Миодистрофия Дюшенна – еще одно интересное с точки зрения терапии генетическое заболевание, диагностируемое у одного из 3–5 тысяч мальчиков. Заболевание является Х-сцепленным, то есть ген (DMD), ответственный за заболевание, располагается на Х хромосоме, что объясняет сцепленное с полом наследование. Ген DMD кодирует белок дистрофин, выполняющий функцию якоря, связывающего внутриклеточный скелет, мембрану и внеклеточный матрикс в сократимых тканях – мускулатуре. Нарушения синтеза дистрофина приводят к потере им своей функции и вызывают постепенно развивающееся в мышцах воспаление, отек, слабость и потерю сократительной функции.
Рис. 6. Генная терапия спинальной мышечной атрофии.
Эти симптомы проявляются с раннего возраста и при отсутствии лечения ведут к дыхательной и сердечной недостаточности и смерти из-за потери диафрагмой и сердцем своих сократительных функций в возрасте 16–19 лет.
Ген DMD является самым длинным геном в геноме человека (примерно 2,3 миллиона нуклеотидов), однако 79 экзонов – участков гена, кодирующих белок, – составляют всего лишь 0,5 % его длины. Большая длина гена обуславливает его подверженность мутационному процессу, причем большинство мутаций является делециями, то есть хромосомными перестройками, при которых происходит потеря участка хромосомы, меньшая часть – дупликациями. В зависимости от типа генетических вариаций, приводящих к потере дистрофином своей функции, применяют разные подходы к генной терапии заболевания (рис. 7).
Некоторые короткие делеции и дупликации внутри какого-либо экзона гена могут приводить к сдвигу рамки считывания. Дело в том, что каждая аминокислота – то, из чего как из кирпичиков собирается белок, – кодируется тремя нуклеотидами (триплетами). Удаление или вставка некратного трем количества нуклеотидов приводит к тому, что все последующие триплеты после нуклеотидной замены по ходу чтения ДНК сдвигаются и начинают кодировать отличную от оригинальной аминокислоту, что вызывает потерю белком его функции (рис. 8).
Рис. 7. Образование функционального белка дистрофина.
Рис. 8. Образование нефункционального белка из-за мутации типа сдвиг рамки считывания.
К счастью, существуют лекарственные препараты группы антисмысловых олигонуклеотидов (короткие последовательности до 25 нуклеотидов длиной), которые позволяют предотвратить встраивание «сломанного» экзона в мРНК (произвести «скиппинг» этого экзона), то есть просто вырезать один экзон в процессе сплайсинга, который обсуждался выше. Для дистрофина, имеющего в своем составе большое количество экзонов, кодирующих повторяющиеся белковые фрагменты, потеря одного такого фрагмента не является критичной и сохраняет функциональность продукта трансляции мРНК без одного экзона. Такими препаратами являются Eteplirsen (Exondys 51®, одобрен в США в 2016, в России не одобрен), Golodirsen (Vyondys 53®, одобрен в США в 2019, в России не одобрен), Viltolarsen (Viltepso®, одобрен в США в 2020, в России не одобрен).