Интернет-журнал "Домашняя лаборатория", 2007 №4
Шрифт:
При таком способе извлечения спирта из бражки с целью получения качественной водки требуются сложные, порой очень дорогостоящие и протекающие с большими потерями спирта и электроэнергии каскады очисток и повторных перегонок.
Именно поэтому этот путь получения качественной водки давно отошел в историю!
В настоящий момент существует другой, более простой способ получения высококачественной водки, суть которого, заключается в получении из СС («самогона») сразу 96 %-го спирта-ректификата, очищенного от примесей, а затем разбавлении его хорошей водой до концентрации водочного раствора. Этот способ требует специального и достаточно сложного ректификационного оборудования.
4. Теория ректификации
Ректификация — тепломассообменный процесс,
4.1. Цель ректификации
Целью ректификации вообще является чёткое разделение жидких смесей на отдельные чистые компоненты.
При ректификации спирта основная задача — из 40 %-го СС получить СР с концентрацией в нем ЭС не менее 96 % при минимальным содержании посторонних примесей. Для этого процесс ректификации СС проводят за один раз на специальном ректификационном оборудовании. Это оборудование позволяет разделять водно-спиртовую смесь на отдельные азеотропные фракции, отличающиеся температурами кипения. Одной из таких фракций является пищевой спирт-ректификат.
4.2. Оборудование для ректификации
В промышленности применяются ректификационные установки непрерывного действия. В этих установках 85 %-ый СС и перегретый водяной пар смешиваются в нижней части колонны и превращаются в «40 %-ый водно-спиртовой насыщенный пар при температуре «94 °C (см. рис. 1). Эта паровая смесь непрерывно поступает в ректификационную колонну, расслаивается по ее высоте на отдельные фракции, которые непрерывно и с определенным темпом отбираются из разных частей колонны. Для обеспечения нормальной работы таких непрерывных колонн требуются достаточно сложные и дорогие элементы автоматики.
В химических и физических лабораториях обычно применяют ректификационные колонны периодического действия, не требующие никакой автоматики. Эти колоны оборудованы только элементарными средствами регулировки отбора, температурного контроля и манометрическим измерителем перепада давления на колонне. Принципиальная схема периодической ректификационной установки представлена на рис. 6.
Установка состоит из испарительной емкости — куба 1 и ректификационной колонны, установленной вертикально на крышке куба. Куб заполнен перерабатываемой жидкостью 4, нагрев и испарение которой осуществляется нагревателем 5. Колонна включает в себя ректификационную часть 9 и головку колонны 10. Ректификационная часть колонны представляет собой трубу 11, покрытую снаружи теплоизоляцией 12 и заполненную внутри контактными элементами 13. Головка колонны представляет собой систему патрубков 3 к которой в соответствии со схемой подсоединены: термометр 6, конденсатор 2, охладитель 14 и регулятор отбора 15. Внизу ректификационной части колонны обычно монтируется манометрическая трубочка 16 для измерения перепада давления в колонне. Через охладитель 14 и конденсатор 2 постоянно протекает охлаждающая вода.
4.3. Работа ректификационной колонны.
Ректификационная установка работает следующим образом. С помощью нагревателя кубовая жидкость доводится до кипения. Образующийся в кубе пар по ректификационной части колонны 9 поднимается вверх и попадает в конденсатор 2, где происходит его полная конденсация. Часть этого конденсата (флегмы) возвращается в ректификационную
часть колонны, а другая часть проходит через охладитель 14 и в виде дистиллята 7 стекает в приемную емкость 8. Соотношение между расходами флегмы и отбираемого дистиллята называется флегмовым числом и устанавливается с помощью регулятора отбора 15. По всей высоте ректификационной части колонны происходит процесс тепломассообмена между стекающей вниз флегмой и поднимающимся вверх паром. В результате этого в головке колонны накапливается в виде пара и флегмы самый легкокипящий (с наименьшей температурой кипения) компонент кубовой жидкости, а следом за ним сама собой выстраивается «номерная очередь» (вниз по высоте колонны) из разных веществ. «Номером» в этой очереди является температура кипения каждого компонента, возрастающая по мере опускания по колонне. С помощью регулятора 15 осуществляется медленный и последовательный отбор этих веществ в соответствии с их очередностью. «Номер» отбираемого в каждый момент вещества регистрируется с помощью термометра 6. Зная эту температуру с учетом атмосферного давления, можно достаточно точно указать основное вещество дистиллята, отбираемое в данный момент времени.Для пояснения приведем простейший и наглядный пример лабораторной ректификации. Нальем в испарительную емкость ацетон (20 мл), метиловый спирт (30 мл), этиловый спирт (50 мл) и воду (100 мл). Общее количество кубовой жидкости составит 200 мл. Проведем ректификацию с записью текущей температуры и текущего объема получаемого дистиллята 7. Общий объем отобранного дистиллята доведем до 120 мл, при этом остаток кубовой жидкости (воды) составит 80 мл. По записям построим график изменения температуры от текущего объема дистиллята рис. 7.
Рис. 7. Изменение температуры при ректификации 4-х компонентной жидкости
На графике отчетливо видны четыре горизонтальных участка ? (tк = const) и три переходных участка ? между ними. Участки ? — это индивидуальные чистые компоненты исходной смеси, а переходные участки ? — это промежуточные вещества, состоящие из смеси двух чистых соседних компонентов. Пусть процесс ректификации проходил при атмосферном давлении 760 мм. рт. ст., тогда по «высоте» и «длине» каждой ступеньки можно легко сделать вывод о качественном и количественном составе исходной смеси:
В процессе ректификации каждые индивидуальные и промежуточные вещества можно отбирать в отдельные приемные емкости 8, что позволяет не только провести качественный и количественный анализ исходной смеси, но и получить все ее компоненты раздельно.
4.4. Что такое «теоретическая тарелка» и сколько их нужно.
Рассмотрим более внимательно кривую равновесия фаз бинарной водно-спиртовой смеси, представленную на рис. 2. Как было указано в примере, можно из 10 %-го спиртового раствора с помощью простой перегонки получить 40 %-ый раствор. Затем из 40 %-го раствора тем же способом можно получить 60 %-ый раствор.
Легко построить на кривой равновесия фаз ряд последовательных ступенек 10–40; 40–60; 60–70; 70–75; и т. д. и убедиться в том, что для достижения в конечном дистилляте концентрации спирта, равной 96 %, теоретически потребуется не менее 9…10 таких последовательных перегонок.
Каждая такая перегонка-ступенька условно называется теоретической тарелкой (ТТ). Количество ТТ физически означает количество перегонок, необходимых для получения 96 %-го спирта из его 10 %-го раствора чистого спирта в чистой воде.
Теоретическую тарелку иногда (а в настоящее время все чаще) называют единицей массопереноса или единицей переноса (ЕП).
На практике мы никогда не имеем чистой смеси спирта с водой (если это не хорошая водка). На практике, единственным источником спиртосодержащей жидкости для получения спирта-ректификата является бражка или самогон. Оба этих раствора кроме воды и спирта содержат в себе небольшое (по объему) количество примесей. Однако в этих примесях обнаружено порядка 70 разнообразных компонентов, температура кипения которых находится вблизи температуры кипения спирта-ректификата. Более того, многие из этих примесей с «большим удовольствием» образуют со спиртом и водой многокомпонентный азеотроп спирта-ректификата с ухудшенными вкусовыми свойствами.