Чтение онлайн

ЖАНРЫ

Интернет-журнал "Домашняя лаборатория", 2007 №5
Шрифт:

Более точная оценка внешнего магнитного поля была проведена с помощью цилиндрической катушки с горизонтальной осью (Ф = 45 мм, N = 300 витков), подвешенной на том же торсионе, лазера и зеркала, закрепленного на торсионе в месте его закрепления на катушке. Измерения показали, что внешнее магнитное поле в лаборатории составляет порядка 3.5 Гс и, таким образом, вышеуказанный поворот статора (без ротора) происходит во внешнем магнитном поле, вызванным индустриальными наводками. Если конструкция статора не имеет вертикальных проводников (они практически не участвуют в создании ЭДС и не существенны для работы генератора), то этот эффект должен отсутствовать.

Надо отметить,

что этот эффект никак не влияет на представленные выше результаты измерения моментов ротора и статора, так как для тока 0.1 А отклонение, вызванное этим внешним полем, составит всего 0.2 градуса.

Далее, ротор и статор второго генератора были жестко сцеплены друг с другом и подвешены на том же торсионе. Угловое отклонение при токе в 1 А составило от 1 до 7 градусов, в зависимости от положения статора относительно направления внешнего поля. Это свидетельствует о том, что и в этом случае статор поворачивается во внешнем поле. Т. е. связанная система ротор — статор фактически не поворачивается. Но, если бы существовал нескомпенсированный статический момент, то эта система должна была повернуться. В то же время, надо заметить, что вышеуказанный эффект (различие моментов) проявляется в динамике — поворот ротора относительно статора и наоборот.

Таким образом:

• Данная конструкция генератора, несомненно работает, полувитки, расположенные по окружности, передают ротору крутящий момент и, следовательно, тангенциальную составляющую силы.

• Напряжение, вырабатываемое генератором пропорционально числу полувитков, длине полувитка и скорости изменения магнитной индукции в месте расположения полувитка (dB/dt).

• Проведенные испытания генератора и обращенного генератора (мотора) подтверждают выводы сделанные в предыдущих разделах о необходимости модификации законов Фарадея и Ампера.

• Неравенство моментов ротора и статора не может быть объяснено методическими и инструментальными ошибками эксперимента и этот возможный эффект нуждается в дополнительном исследовании, тем более, что жестко связанная система ротор — статор не поворачивается. Но тут надо отметить неравноправность относительных движений проводника и магнита, отмеченную выше. При этом, в данных экспериментах в первом случае ротор (магнит) поворачивается относительно неподвижного статора и, наоборот, во втором. В разделе

5, на примере униполярного генератора, было показано, что движение магнита относительно неподвижного проводника и движение проводника относительно неподвижного магнита — это не одно и то же, в частности, в первом случае лоренцева ЭДС не наводится. Таким образом, можно ожидать подобных эффектов и в данном случае.

• Наблюдаемое самопроизвольное вращение статора может быть объяснено внешними магнитными полями, в которых статор поворачивается (как рамка с током) при пропускании тока через обмотку. Это внешнее поле, вызванное индустриальными наводками, было обнаружено и составило порядка 3.5 Гс. В то же время, это поле, в связи с его малостью, никак не сказывается на результатах измерений.

10. Силовое взаимодействие источников магнитного поля

Если представить магнит как систему проводников с током, создающих циркуляцию магнитного поля (это, в общем-то, соответствует современным представлениям), то в кольцевом магните существуют две оси циркуляции (Рис. 24), внутренняя и внешняя, создающие взаимно противоположные циркуляции, при этом, границей раздела их магнитных силовых линий является плоскость полюсов.

Рис. 24

Для однородного кольцевого магнита оси циркуляции и полюса являются окружностями (Рис. 24). При этом, оси циркуляции находятся внутри магнита (в

данном случае лежат в плоскости, разделяющей магнит пополам), а полюса представляют собой окружности, лежащие сверху и снизу на поверхности магнита. Если диаметр внутреннего отверстия кольцевого магнита уменьшать, то, в пределе, внутренняя ось циркуляции выродится в точку и плоскость полюсов превратиться в линию, совпадающую с осью диска (цилиндра). Можно видеть, что и у плоского магнита, поляризованного по длине или толщине, также существуют две оси циркуляции. Таким образом, у постоянных магнитов разных конфигураций существуют две оси циркуляции, одна из которых вырождается в точку для осесимметричных цилиндрических магнитов, не содержащих внутренних полостей. Формально, ось циркуляции (для кольцевого магнита) можно представить, как кольцевой проводник, в котором постоянно течет ток (см. раздел 7). Для кольцевого ферритового магнита этот «ток» составляет порядка 40 А.

Силовое взаимодействие магнитов и проводников можно представить как притяжение или отталкивание осей циркуляции. При совпадении направления циркуляции оси притягиваются, при противоположных направлениях — отталкиваются.

Также, магнит и проводник притягиваются или отталкиваются как два проводника с током, что и подтверждается экспериментом (Рис. 25). Таким образом, два источника магнитного поля притягиваются, если они создают циркуляции магнитного поля, направленные в одну сторону или отталкиваются при противоположных направлениях циркуляции (Рис. 25).

Рис. 25

Это же относится к притяжению двух постоянных магнитов. На рис. 26 приведен пример притяжения двух постоянных дисковых магнитов.

Рис. 26

У дисковых магнитов существует, также второе положение, при котором оси циркуляции двух взаимодействующих магнитов максимально совмещены — притяжение противоположных полюсов. Нетрудно видеть, что и в этом случае оси циркуляции также максимально совмещены. В случае двух кольцевых магнитов, из которых один (меньший) помещен внутрь отверстия в большем кольцевом магните, меньший магнит притягивается к внутренней поверхности большого кольца в полном соответствии с изложенным принципом (Рис. 27).

Рис. 27

To же относится к магнитам с любой конфигурацией магнитного поля. Одним из примеров является силовое взаимодействие двух проводников с током.

В случае однородного магнитного поля ось циркуляции находятся в бесконечности. Этот случай может быть представлен как наложение двух взаимно противоположных циркуляций с осями расположенными в бесконечности справа и слева от взаимодействующего с этим полем магнита (проводника). Если вектор В направлен вертикально в плоскости рисунка (Рис. 28), то циркуляция, создаваемая левой осью (находящейся в бесконечности) направлена против часовой стрелки, а циркуляция, создаваемая правой осью — по часовой стрелке.

Рис. 28

Тогда на источник, создающий циркуляцию магнитного поля будет действовать сила направленная в сторону оси соответствующей циркуляции. В случае рамки с током, она будет поворачиваться так, что ее плоскость станет перпендикулярна вектору В и растягиваться в этой плоскости. В общепринятом изложении, в данном случае на проводники рамки действует сила Ампера и вектор магнитного момента р принимает положение параллельное вектору В. Но, как можно видеть, и этот случай полностью вписывается в вышеизложенный принцип взаимодействия магнитных полей.

Поделиться с друзьями: