Интернет-журнал "Домашняя лаборатория", 2007 №8
Шрифт:
Использование FLASH-памяти позволяет перепрограммировать устройство, обеспечивая таким образом большую гибкость и сокращение времени новых разработок. Эти контроллеры включают 16-разрядное процессорное ядро с фиксированной точкой и производительностью 20 MIPS, основанное на архитектуре семейства ADSP-217X. Память состоит из 512х24 бит ОЗУ памяти программ, 512x16 бит ОЗУ памяти данных, 4Кх24 бит ПЗУ памяти программ и 4К х 24 бит программируемой FLASH-памяти. Интегрированная посредством использования АЦП аналоговая подсистема позволяет полностью контролировать трехфазные токи в обмотках двигателя. 16-разрядный 3-фазный PWM генерирует управляющие сигналы для внешнего мощного инвертирующего каскада. Контроллеры выпускаются в 28-выводном SOIC или PDIP корпусе. Блок-схема контроллера ADMCF328 показана на рис. 9.23.
Доступность
Компания Analog Devices недавно анонсировала нового представителя семейства DashDSP — ADMCF5XX на базе 16-разрядного ядра с фиксированной точкой ADSP-219X с производительностью 150 MIPS. При токе потребления 0,4 mA/MIP новый контроллер позволяет разработчикам строить системы с низкой потребляемой мощностью и с широкими пределами регулирования скорости. Интеграция до 128 Кбайт внутрикристальной FLASH-памяти значительно облегчает разработку системы и позволяет гибко модифицировать программное обеспечение системы. Такое решение также позволяет пользователю загружать программное обеспечение непосредственно из FLASH-памяти в оперативную память. Пользователь может выбрать, исходя из требований к параметрам и стоимости разрабатываемой системы, один из 10-, 12-, или 14-разрядных АЦП. Семейство DashDSP поддерживается средствами разработки VisualDSP ADI, которые включают первый промышленный C++ компилятор. Семейство ADMCF5XX дополнено широким диапазоном высокопроизводительной периферии, например, 3 6-фазными 16-разрядными PWM с одиночным или двойным интерфейсами кодера для управления многокоординатными двигателями. Оцифровка токов в обмотках двигателя может быть реализована с помощью средств гальванической развязки или методом инвертирующего шунта, с программируемым пользователем временем преобразования АЦП. Источник опорного напряжения, схема сброса процессорного ядра при включении питания и вспомогательные PWM, позволяющие корректировать коэффициент мощности, также интегрированы на кристалле. Дополнительно в рамках семейства реализована различная интерфейсная периферия, например, полноценная CAN-шина, UART, сериальные порты, и JTAG-интерфейс.
Кодеки и процессоры обработки сигналов в голосовых приложениях и аудиосистемах
В каналах голосовой связи и аудиосистемах типа автомобильных телефонных комплектов и модемов на сигнальных процессорах строятся превосходные конструктивные блоки систем.
Компания Analog Devices недавно анонсировала выпуск серии ADSP-21ESP202, специально разработанной для встроенных систем обработки речи в автомобильных голосовых телефонных системах. Эта микросхема включает в себя два кодека AD73322 и 16-разрядное вычислительное ядро с фиксированной точкой ADSP-218X. Из 40 Кбайт ОЗУ на кристалле 8 Кб х 24 бит отдано под память программ и 8 Кб х 24бит — под память данных. Внутрикристальное ППЗУ объемом 24 Кбайт конфигурировано под 8 Кб х 24бит память программ.
На рис. 9.24 приведен пример реализации на базе ADSP-21ESP202 дуплексного телефонного комплекта с голосовой связью. Эта серия является крупным достижением как в уровне, так и в гибкости функциональной интеграции.
Семейство ADSP-21ESP202 является первым продуктом, основанным на использовании вычислительного ядра ADSP-218X, включающего аналоговые функциональные возможности (см. рис. 9.25). Все представители семейства содержат два сигма-дельта кодека, которые позволяют программно управлять частотой выборки (до 64 кГц), коэффициентом усиления входных и выходных каскадов. Имеются также два аналоговых компаратора, которые могут использоваться для обнаружения голоса и отслеживания процессов подключения/отключения кабеля, а также для генерации процессорных прерываний. Два переключаемых источника тока позволяют реализовать функциональные возможности PWM с помощью универсального таймера. Оба источника реализуют выбор быстрого или стандартного режима заряда. Возможность переключения может быть использована для автоматического регулирования усиления (AGC), а также для подстройки частоты и фазы входного задающего генератора.
СТРУКТУРНАЯ СХЕМА ИС ADSP21ESP202 С ЯДРОМ DSP ADSP-218X
• Интегрированы аналоговые схемы
? Двойной программируемый голосовой кодек на 64 kSPS, сигнал/шум 75 дБ
? Два аналоговых компаратора
? Два источника тока
• Интегрировано заказное ПЗУ
? По спецификации заказчика или
? Со стандартными
функциями Дополнительные возможности? Работа на частоте 49 МГц при напряжении питания 3.3 В
? 8 К ОЗУ программ, 8 К ОЗУ данных
? 8 К ПЗУ программ
? Расширенные прерывания и флаги
? Расширенные возможности таймера
• Корпус LQFP со 128 выводами
Рис. 9.25
ADSP-21ESP202 также содержит ППЗУ памяти программ с блоками памяти по 8 Кслов. Analog Devices поставляет микросхемы с несколькими версиями прикладных алгоритмов, заранее записанных в ПЗУ. Продукция Analog Devices также позволяет записывать в ПЗУ программы, разработанные самим пользователем.
Система, показанная на рис. 9.24, имеет в своем составе средства цифровой обработки сигналов с подавлением шума/эхо-сигнала и опознавания речи, кодеки для непосредственного подключения громкоговорителя/микрофона и сотового терминала, энергонезависимую память для хранения программ и баз данных опознавания речи. Семейство ADSP-21ESP202 интегрирует все эти компоненты в одном корпусе, что позволяет создать на одной интегральной схеме дуплексный автомобильный телефонный комплект с голосовой связью. Такой подход предусматривает сокращение на 75 % числа необходимых интегральных схем по сравнению с решениями предыдущего поколения.
Обработка аудиосигналов на персональном компьютере и современные модемы также требуют применения высокопроизводительных кодеков. На рис. 9.26 приведен пример реализации аудиотракта или приемника-передатчика модема на базе кодека AD1819В SoundPort®.
Этот кодек полностью совместим со спецификациями интерфейса АС '97 (Audio Codec '97, Component Specification, Revision 1.03, © 1996, Intel Corporation). Кроме того, AD1819 поддерживает несколько конфигураций кодека (до трех на каждый канал интерфейса АС), последовательный интерфейс с DSP, изменение тактовой частоты, кодирование сигнала и его фильтрацию для модемов, и имеет встроенный преобразователь для трехмерных стереоэффектов Phat™.
Кодек AD1819В предназначен главным образом для высокоскоростного ввода аудиоданных в компьютеры и модемы или для использования в системах цифровой обработки. Главные архитектурные особенности AD1819B — высококачественная входная аналоговая часть, двухканальный 16-разрядный сигма-дельта АЦП, двухканальный 16-разрядный сигма-дельта ЦАП и последовательный порт. Уровень шумов и гармонических искажений не превышает — 90 дБ, тактовая частота может варьироваться в пределах от 7 до 48 кГц.
32-разрядный процессор SHARC от Analog Devices с плавающей точкой демонстрирует высочайшее качество декодирования сигнала Dolby Digital АС-3. Образцовая архитектура цифровой сигнальной обработки, показанная на рис. 9.27, использует сигнальный процессор ADSP-21065L SHARC и интегральную микросхему смешанной обработки AD1836, что обеспечивает низкую цену и высокое качество тракта многоканальной аудиообработки.
Основная область применения включает в себя А/V-ресиверы для домашнего театра и автомобильные аудиосистемы класса high-end. AD 1836 выполняет всю смешанную обработку сигнала с использованием четырех входных каналов АЦП и шести выходных каналов ЦАП. Кодек AD1836 обеспечивает суммарный уровень шумов и гармонических искажений -97 дБ и отношение сигнал/шум 105 дБ, что необходимо для высококачественного аудио. В подобных системах могут использоваться и фиксированные алгоритмы цифровой обработки, однако применение программируемых сигнальных процессоров обеспечивает большую гибкость. Сигнальный процессор может быть запрограммирован для декодирования аудиоформатов MP3, Dolby Digital АС-3, ТНХ, или DTS. С помощью дополнительного программного обеспечения могут быть легко реализованы и другие алгоритмы обработки аудиосигналов.
В сложных цифровых аудиосистемах часто возникает необходимость в распределении сигнала между несколькими процессорами обработки. На рис. 9.28 показан 16-канальный микшер, в котором использовано два ADSP-21160S.
Поток данных от шестнадцати 24-разрядных АЦП поступает на конвертор FPGA. Он преобразует последовательный поток данных от АЦП в параллельный и направляет его на два внешних порта ADSP-21160. Внешний порт на каждом DSP имеет аппаратную поддержку одновременной передачи данных на оба DSP сразу. Контроллеры прямого доступа к памяти DSP получают эти данные и перемещают их по мере необходимости во внутреннюю память. Аппаратная поддержка и контроллеры прямого доступа к памяти снижают сложность архитектуры конвертера FPGA, потому что в этом случае от FPGA требуется только передача данных на шину. То есть отпадает необходимость в арбитраже шины и генерации адресов.