Интернет-журнал "Домашняя лаборатория", 2007 №8
Шрифт:
Сигнальные процессоры выполняют самые различные алгоритмы обработки, например микширование, панорамное звучание, регулировку АЧХ и дополнительную обработку типа реверберации или компрессии/экспандирования динамического диапазона. Выходной поток аудиоданных после такой обработки поступает на 24-разрядный стереоЦАП. Эти задачи могут выполняться одновременно, например, один из DSP отвечает за микширование и эффекты, в то время как другой реализует функции эквалайзера. В другом случае на каждый DSP возлагается задача обработки половины каналов. Выбор оптимального алгоритма определяется сложностью необходимой обработки.
Для этого примера видно, что два процессора ADSP-21160S
У процессора ADSP-21160 имеются достаточно примитивные инструкции для реализации трехполосного эквалайзера (низкие, средние и высокие частоты), микшера, эффектов задержки, и компрессии по каждому каналу. Перемещение данных в память не требует затрат вычислительных ресурсов, ввиду отсутствия мультизадачности.
Сигма-дельта АЦП с программируемым цифровым фильтром
Большинство сигма-дельта АЦП имеют собственный внутренний цифровой фильтр. Частота среза этого фильтра (и скорость выходного потока данных АЦП) привязана к частоте задающего генератора. AD7725 представляет собой 16-разрядный сигма-дельта АЦП с программируемым внутренним цифровым фильтром. Блок-схема 9.29 показывает, что максимальная частота дискретизации преобразователя составляет 19,2 МГц.
Следующий за преобразователем перестраиваемый фильтр с конечной импульсной характеристикой выполняет прореживание выходных данных преобразователя с коэффициентом децимации 8, снижая скорость выходного потока данных до 2,4 МГц. Отклик перестраиваемого FIR-фильтра также показан на рис. 9.29. На выходе перестраиваемого фильтра расположен программируемый цифровой фильтр. На диаграмме показан типичный отклик для FIR-фильтра низкой частоты с частотой среза 300 кГц.
Программное управление фильтром позволяет гибко оперировать длиной фильтра и коэффициентом децимации. Фильтр может иметь до 108 коэффициентов, до 5 режимов прореживания и коэффициенты децимации от 2 до 256. При обработке коэффициентов поддерживается точность 24 разряда, а при арифметических операциях — 30 разрядов.
AD7725 содержит процессор постобработки PulseDSP™ компании Systolix, который позволяет запрограммировать характеристики фильтра через параллельный или последовательный интерфейс микропроцессора.
Процессор постобработки имеет полностью программируемое ядро, которое обеспечивает производительность обработки до 130 миллионов операций умножения с накоплением в секунду (MAC). Процесс программирования процессора сводится к редактированию пользователем конфигурационного файла, который содержит все необходимые данные для программирования функций фильтра. Этот файл создан с помощью компилятора FilterWizard, который поставляется Analog Devices. Компилятор AD7725 воспринимает значения коэффициентов фильтра как входные данные и автоматически генерирует необходимый программный код устройства.
Файл коэффициентов отклика фильтра может быть сгенерирован с помощью пакетов проектирования цифровых фильтров типа Systolix FilterExpress™ или QEDESIGN ™ компании Momentum Data Systems . Отклик фильтра может быть построен на основе данных, известных пользователю до генерации
коэффициентов фильтра. Скорость потока входных данных процессора — 2,4 МГц. Если прореживание применяется в многоступенчатом фильтре, первый фильтр будет обрабатывать поток данных со скоростью 2,4 MSPS, и пользователь может затем производить децимацию между каскадами. Максимальное число коэффициентов фильтра, которые могут поддерживаться процессором, равно 108. При этом фильтр со 108 коэффициентами может быть выполнен в виде одиночного или многокаскадного фильтра с суммарным числом коэффициентов 108. Фильтр может иметь характеристики НЧ-фильтра, ВЧ-фильтра, режекторного или полосового фильтра и может быть выполнен как КИХ- или БИХ-фильтр.AD7725 работает от однополярного источника питания +5В. Он имеет внутрикристальный источник опорного напряжения 2,5 В и выпускается в 44-выводном PQFP корпусе. При работе на максимальной тактовой частоте потребляемая мощность не превышает 350 мВт. Возможна работа в режиме сниженной в два раза максимальной частоты задающего генератора -10 МГц. Максимальная потребляемая мощность в этом режиме составляет 200 мВт.
Резюме
Некоторые примеры использования DSP в различных областях приведены на рис. 9.30. Помимо описанных выше, имеется много других областей, где сфера применимости DSP на практике быстро расширяется: это промышленность, связь, медицинская и военная техника и потребительский рынок. Обсуждение каждого примера могло бы стать предметом отдельной книги. Но в этой главе показано только несколько наиболее традиционных областей применения DSP и дано представление о том, как DSP взаимодействуют практически с каждым аспектом современной жизни.
ДРУГИЕ ОБЛАСТИ ПРИМЕНЕНИЯ ПРОЦЕССОРОВ DSP
• Автомобильные телефоны с голосовым управлением (hands-free)
• Цифровые автоответчики
• Устройства распознавания голоса
• Кабельные сети
• Компьютерная звуковая система
• Цифровое аудио: профессиональное и бытовое
• Обработка цифрового видеосигнала
• Телевидение высокой четкости (HDTV)
• Компьютерная графика
• Цифровые спецэффекты
• Цифровые вещательные спутники (DBS)
• Система глобального позиционирования (GPS)
• Медицина: ультразвуковые, ядерномагниторезонансные сканнеры, томографы
• Военная индустрия: радиолокационные станции, наведение ракет на цель
Рис. 9.30
Глава 10
Методы проектирования аппаратного обеспечения
Уолт Кестер
Низковольтные интерфейсы
Этан Бордо, Иоханнес Хорват, Уолт Кестер
В течение последних 30 лет стандартным напряжением питания (VDD) цифровых схем оставалось напряжение 5 В. Такое значение напряжения использовалось для обеспечения нормального режима работы биполярного транзистора. Однако в конце 80-х стандартной технологией при проектировании ИС стала технология КМОП. Для микросхем КМОП не является обязательным использование того же напряжения, что и для микросхем, выполненных по технологии ТТЛ, но для обеспечения совместимости со старыми системами промышленность адаптировала уровни логических сигналов к уровням сигналов ТТЛ. (Приложение 1).