Чтение онлайн

ЖАНРЫ

Интернет-журнал "Домашняя лаборатория", 2008 №1
Шрифт:

В рамках биотехнологии можно выделить 3 основных части:

1. Промышленная биотехнология, где рассматриваются общие принципы осуществления биотехнологических процессов, происходит знакомство с основными объектами и сферами применения биотехнологии, рядом крупномасштабных промышленных биотехнологических производств, использующих микроорганизмы.

2. Клеточная инженерия. Основная цель этого раздела — знакомство с методами ведения культур клеток и практическим использованием этих объектов. В рамках этого раздела выделяют культивирование растительных клеток и методы культивирования животных клеток, так как подходы к культивированию этих объектов различаются в силу их принципиальных биологических различий. Клеточная биотехнология обеспечила ускоренное получение новых важных форм и линий растений и животных, используемых в селекции на устойчивость, продуктивность и качество; размножение ценных

генотипов, получение ценных биологических препаратов пищевого, кормового и медицинского назначения.

3. Генная инженерия. Высшим достижением современной биотехнологии является генетическая трансформация, перенос чужеродных генов и других материальных носителей наследственности в клетки растений, животных и микроорганизмов, получение трансгенных организмов с новыми или усиленными свойствами и признаками. По своим целям и возможностям в перспективе это направление является стратегическим. Оно позволяет решать коренные задачи селекции биологических объектов на устойчивость, высокую продуктивность и качество продукции при оздоровлении экологической обстановки во всех видах производств. Однако для достижения этих целей предстоит преодолеть огромные трудности в повышении эффективности генетической трансформации и, прежде всего, в идентификации генов, создании их банков клонирования, расшифровке механизмов полигенной детерминации признаков и свойств биологических объектов, обеспечении высокой экспрессии генов и создании надежных векторных систем. Уже сегодня во многих лабораториях мира, в том числе и в России, с помощью методов генетической инженерии созданы принципиально новые трансгенные растения, животные и микроорганизмы, получившие коммерческое признание.

Современная биотехнология тесно стыкуется с рядом научных дисциплин, осуществляя их практическое применение или же являясь их основным инструментом (рис. 1).

Рис. 1. Связь биотехнологии с другими науками

(по В.И.Кефели, 1989)

В молекулярной биологии использование биотехнологических методов позволяет определить структуру генома, понять механизм экспрессии генов, смоделировать клеточные мембраны с целью изучения их функций и т. д. Конструирование нужных генов методами генной и клеточной инженерии позволяет управлять наследственностью и жизнедеятельностью животных, растений и микроорганизмов и создавать организмы с новыми полезными для человека свойствами, ранее не наблюдавшимися в природе.

Микробиологическая промышленность в настоящее время использует тысячи штаммов различных микроорганизмов. В большинстве случаев они улучшены путем индуцированного мутагенеза и последующей селекции. Это позволяет вести широкомасштабный синтез различных веществ.

Некоторые белки и вторичные метаболиты могут быть получены только путем культивирования клеток эукариот. Растительные клетки могут служить источником ряда соединений — атропин, никотин, алкалоиды, сапонины и др. Клетки животных и человека также продуцируют ряд биологически активным соединений. Например, клетки гипофиза — липотропин, стимулятор расщепления жиров, и соматотропин — гормон, регулирующий рост.

Созданы перевиваемые культуры клеток животных, продуцирующие моноклональные антитела, широко применяемые для диагностики заболеваний. В биохимии, микробиологии, цитологии несомненный интерес вызывают методы иммобилизации как ферментов, так и целых клеток микроорганизмов, растений и животных. В ветеринарии широко используются такие биотехнологические методы, как культура клеток и зародышей, овогенез in vitro, искусственное оплодотворение. Все это свидетельствует о том, что биотехнология станет источником не только новых продуктов питания и медицинских препаратов, но и получения энергии и новых химических веществ, а также организмов с заданными свойствами.

Промышленная биотехнология

ОСНОВНЫЕ НАПРАВЛЕНИЯ БИОТЕХНОЛОГИИ

Условно можно выделить следующие основные направления биотехнологии: биотехнология пищевых продуктов, препаратов для сельского хозяйства, препаратов и продуктов для промышленного и бытового использования, лекарственных препаратов, средств диагностики и реактивов, биотехнология также включает выщелачивание и концентрирование металлов,

защиту окружающей среды от загрязнения, деградацию токсических отходов и увеличение добычи нефти.

Биоэнергетика

Растительный покров Земли составляет более 1800 млрд. т сухого вещества, что энергетически эквивалентно известным запасам энергии полезных ископаемых. Леса составляют около 68 % биомассы суши, травяные экосистемы — примерно 16 %, а возделываемые земли — только 8 %.

Для сухого вещества простейший способ превращения биомассы в энергию заключается в сгорании — оно обеспечивает тепло, которое в свою очередь превращается в механическую или электрическую энергию. Что же касается сырого вещества, то в этом случае древнейшим и наиболее эффективным методом превращения биомассы в энергию является получение биогаза (метана).

Метановое «брожение», или биометаногенез, — давно известный процесс превращения биомассы в энергию[48]. Он был открыт в 1776 г. Вольтой, который установил наличие метана в болотном газе. Биогаз, получающийся в ходе этого процесса, представляет собой смесь из 65 % метана, 30 % углекислого газа, 1 % сероводорода (H2S) и незначительных количеств азота, кислорода, водорода и закиси углерода. Болотный газ дает пламя синего цвета и не имеет запаха[49]. Его бездымное горение причиняет гораздо меньше неудобств людям по сравнению со сгоранием дров, навоза жвачных животных или кухонных отбросов. Энергия, заключенная в 28 м3 биогаза, эквивалентна энергии 16,8 м3 природного газа, 20,8 л нефти или 18,4 л дизельного топлива.

Биометаногенез осуществляется в три этапа: растворение и гидролиз органических соединений, ацидогенез и метаногенез. В энергоконверсию вовлекается только половина органического материала — 1800 ккал/кг сухого вещества по сравнению с 4000 ккал при термохимических процессах, но остатки, или шлаки, метанового «брожения» используются в сельском хозяйстве как удобрения. В процессе биометаногенеза участвуют три группы бактерий. Первые превращают сложные органические субстраты в масляную, пропионовую и молочную кислоты; вторые превращают эти органические кислоты в уксусную кислоту, водород и углекислый газ, а затем метанообразующие бактерии восстанавливают углекислый газ в метан с поглощением водорода, который в противном случае может ингибировать уксуснокислые бактерии. В 1967 г. Брайант и др. установили, что уксуснокислые и метанообразующие микроорганизмы образуют симбиоз, который ранее считался одним микробом и назывался Methanobacillus omelianskii.

Для всех метанобактерий характерна способность к росту в присутствии водорода и углекислого газа, а также высокая чувствительность к кислороду и ингибиторам производства метана. В природных условиях метанобактерии тесно связаны с водородобразующими бактериями: эта трофическая ассоциация выгодна для обоих типов бактерий. Первые используют газообразный водород, продуцируемый последними; в результате его концентрация снижается и становится безопасной для водородобразующих бактерий.

Метановое «брожение» происходит в водонепроницаемых цилиндрических цистернах (дайджестерах) с боковым отверстием, через которое вводится ферментируемый материал. Над дайджестером находится стальной цилиндрический контейнер, который используется для сбора газа; нависая над бродящей смесью в виде купола, контейнер препятствует проникновению внутрь воздуха, так как весь процесс должен происходить в строго анаэробных условиях. Как правило, в газовом куполе имеется трубка для отвода биогаза. Дайджестеры изготовляют из глиняных кирпичей, бетона или стали. Купол для сбора газа может быть изготовлен из нейлона; в этом случае его легко прикреплять к дайджестеру, изготовленному из твердого пластического материала. Газ надувает нейлоновый мешок, который обычно соединен с компрессором для повышения давления газа.

В тех случаях, когда используются отходы домашнего хозяйства или жидкий навоз, соотношение между твердыми компонентами и водой должно составлять 1:1 (100 кг отходов на 100 кг воды), что соответствует общей концентрации твердых веществ, составляющей 8-11 % по весу. Смесь сбраживаемых материалов обычно засевают ацетогенными и метаногенными бактериями или отстоем из другого дайджестера. Низкий pH подавляет рост метаногенных бактерий и снижает выход биогаза; такой же эффект вызывает перегрузка дайджестера. Против закисления используют известь. Оптимальное «переваривание» происходит в условиях, близких к нейтральным (pH 6,0–8,0). Максимальная температура процесса зависит от мезофильности или термофильности микроорганизмов (30–40 °C или 50–60 °C); резкие изменения температуры нежелательны.

Поделиться с друзьями: