Чтение онлайн

ЖАНРЫ

Интернет-журнал "Домашняя лаборатория", 2008 №1
Шрифт:

В основе биологической деградации лигноцеллюлозы лежит действие целлюлолитических ферментов. Реакционная способность природных целлюлозосодержащих материалов невелика, поэтому сырье для ферментативного осахаривания целлюлозы должно иметь большую поверхность, а микрофибриллярная структура целлюлозы должна быть разрушена. Реакционную способность природных субстратов также снижает наличие лигнина. Наиболее эффективным, а также дорогим и энергоемким способом предварительной подготовки сырья является размол. Поэтому для предобработки используют воздействие 0.5–2 % растворов щелочи, гамма-облучение, механо-термообработку в разбавленной серной кислоте с последующей экстракцией лигнина и др. методы.

Гидролиз можно проводить и

биологическим способом, с помощью ферментов, выделяемых грибами видов Trichoderma, Aspergillus, Sporotrichum. Далее при использовании дрожжей можно получить спирт, при использовании бактерий Klebsiella или Aeromonas — бутанол. Ряд микроорганизмов рода Clostridium могут продуцировать уксусную и молочную кислоты, лактат, ацетон из опилок, соломы, отходов сахарного тростника. С помощью Trichoderma reesii биомасса разлагается до сахаров.

Ферменты и неразложившаяся целлюлоза поступают в повторные циклы, а остаточный лигнин используется в качестве источника энергии для перегонки спирта. Технология, разработанная в Арканзасском университете и используемая в промышленности нефтяной компанией «Галф ойл», заключается в одновременном осахаривании целлюлозы и сбраживании сахаров, полученных путем гидролиза. Для это го к смеси целлюлозной биомассы и дрожжей добавляют раствор целлюлаз.

Остающийся лигнин также используется для перегонки в качестве топлива, но пентозы не сбраживаются. Фирма «Био фьюэл индастриз» из Ричмонда намерена построить в шт. Вирджиния фабрику, на которой в 1985 г. будет производиться 500 т этилового спирта в сутки из 2500 т целлюлозных отходов посредством этой технологии и целлюлаз из Trichoderma reesii.

Третий вид технологии состоит в прямом сбраживании целлюлозными бактериями гексоз и пентоз, образующихся при гидролизе целлюлозы и гемицеллюлоз. Преимущества этой технологии, разработанной в лабораториях Массачусетского технологического института, заключаются в следующем: помимо одновременной конверсии целлюлоз и пентоз в этанол происходит комбинация целлюлозного и спиртового брожения, а, кроме того, необходимая предварительная обработка субстратов сводится к минимуму.

При микробной деградации и конверсии целлюлоз и гемицеллюлоз можно получать этиловый спирт и сырье для химической промышленности (фурфурол, фенолы, крезолы). 200 000 т надлежащим образом переработанной соломы дают 50 000 т этанола и 20 000 т фурфурола. По оценкам некоторых специалистов, при микробной переработке целлюлозы можно получить до 30 % нефтехимикатов. Методы генной инженерии помогут создать штаммы, которые будут лучше адаптированы к этим типам конверсии и дадут больший выход. Это позволит разработать реальную стратегию замещения, которая станет эффективной после 2000 г. (к тому времени химия углерода придет на смену нефтехимии при производстве новых биополимеров, биорастворителей и биодетергентов). Перенос генов целлюлаз и гемицеллюлаз из Clostridium thermocellum в другие виды Clostridium позволит превращать целлюлозы и гемицеллюлозы в этиловый спирт, ацетон, бутанол, уксусную и молочную кислоты.

Термофилия определенных штаммов Clostridium (при оптимальной температуре роста 65–75 °C) создает известные преимущества, так как стоимость перегонки этилового спирта и других растворителей уменьшится, а это сделает производственный процесс более экономичным.

Исследователи из Университета Нового Южного Уэльса (Австралия) и Рутгерского университета (США) обнаружили, что бактерия Zymomonas mobilis, выделяемая из пальмового вина и мексиканского алкогольного напитка пульке, сбраживает сахара вдвое быстрее, чем дрожжи. Этот вид также подвергается геномной модификации, которая позволит разлагать целлюлозу с одновременным сбраживанием сахаров, получающихся в ходе деградации.

В условиях строгого анаэробиоза можно осуществлять биометаногенез ароматических соединений. Этот процесс, надо полагать, широко распространен в природе, особенно

в отходах и сточных водах, а также при конверсии некоторых биоцидов. По наблюдениям Ферри и Вольфа, в этом процессе участвуют несколько видов микробов, ответственных за различные стадии деградации ароматических колец до ацетата, который является одним из субстратов для метанобактерий (иными словами, его дегидрирование дает электроны, требующиеся для восстановления двуокиси углерода в метан). Среди бактерий видов превалируют, судя по всему, Methanobacterium formicicum и Methanospirillum hungati. Ферри и Вольфу удалось их вывести в чистые культуры.

Бензольное кольцо сначала восстанавливается и затем разрезается на алифатические кислоты под действием грамотрицательных микроорганизмов. Последние превращаются в субстраты, используемые метанобактериями. Образующиеся электроны, вероятно, способствуют образованию водорода, который восстанавливает СО2 в СН4.

Разложение бензольного кольца в метан в процессе анаэробиоза не является правилом. Например, в рубце жвачных животных бензоат и ароматические кислоты, получающиеся за счет деградации целлюлозы, не приводят к образованию метана; их можно обнаружить в моче и виде гиппуратов и других сходных соединений. В природных условиях ароматические соединения получаются при медленном разложении таннинов и лигнина главным образом благодаря внеклеточным микробным ферментам.

Так как лигнины и таннины составляют значительную часть почвенного органического материала, метаногенез этих полимеров — важный процесс в углеродном цикле биосферы.

Одним их отходов сельского хозяйства является солома. Эти отходы трудно использовать, так как скорость разложения соломы невелика. Лучшая утилизация — инокулирование её ассоциацией целлюлолитических грибов[52], азотфиксирующих и полисахаридообразующих бактерий. В таком виде солому можно запахивать в землю как органическое удобрение, а можно через определенное время использовать как высокобелковый витаминизированный корм.

ОБЪЕКТЫ БИОТЕХНОЛОГИИ И ИХ БИОТЕХНОЛОГИЧЕСКИЕ ФУНКЦИИ

Биотехнологические объекты находятся на разных ступенях организации:

а) субклеточные структуры (вирусы, плазмиды, ДНК митохондрий и хлоропластов, ядерная ДНК);

б) бактерии и цианобактерии;

в) грибы;

г) водоросли;

д) простейшие;

е) культуры клеток растений и животных;

ж) растения — низшие (анабена-азолла) и высшие — рясковые.

Субклеточные структуры будут подробно изучаться в разделе «Основы генетической инженерии», культуры растительных и животных клеток — в соответствующих разделах.

Бактерии и цианобактерии

Микроорганизмов, синтезирующих продукты или осуществляющих реакции, полезные для человека, несколько сотен видов. Биотехнологические функции бактерий разнообразны. Бактерии используются при производстве:

— пищевых продуктов, например, уксуса (Gluconobacter suboxidans), молочнокислых напитков (Lactobacillus, Leuconostoc) и др.;

— микробных инсектицидов (Bacillus thuringiensis);

— белка (Methylomonas);

— витаминов (Clostridium — рибофла вин);

— растворителей и органических кислот;

— биогаза и фотоводорода.

Полезные бактерии относятся к эубактериям[53]. Уксуснокислые бактерии, представленные родами Gluconobacter и Acetobacter, — это грамотрицательные бактерии, превращающие этанол в уксусную кислоту, а уксусную кислоту в углекислый газ и воду. Род Bacillus относится к грамположительным бактериям, которые способны образовывать эндоспоры и имеют перитрихиальное жгутикование.

Поделиться с друзьями: