Интернет-журнал "Домашняя лаборатория", 2008 №3
Шрифт:
Рис. 5. Зависимость электроосмотического потока от pH.
Условия: внутренний диаметр капилляра 75 мкм, L = 40/47 см, буфер: фосфат 10 мМ, нейтральный маркер: бензиловый спирт: Е = 425 В/см.
Если же при добавлении катионных поверхностноактивных веществ (ПАВ) к разделительному буферу на поверхности капилляра адсорбируется положительный заряд (см. рис. 6), то ЭОП меняет направление и переносит разделительный буфер в направлении анода.
Рис. 6. Адсорбция
Зависимость ЭОП в кварцевых капиллярах от значений pH и соответствующая воспроизводимость подвижности представлены на рис. 5. ЭОП проявляет при циклическом обмене буферов типичный эффект гистерезиса. Наибольшие отклонения наблюдаются в средней области pH при значениях, близких к значению рН кремневой кислоты. Благодаря увеличению времени кондиционирования в зависимости от изменений значений pH буфера удается несколько уменьшить это отклонение, и явления гистирезиса уменьшаются. Для воспроизводимости работ с незагруженными капиллярами необходимо при обмене буферов стандартизовать время заполнения и кондиционирования с тем, чтобы можно было устранить явление гистерезиса ЭОП.
Как уже упоминалось, ЭОП уменьшается по мере возрастания ионной силы. При этом зависимость ЭОП от логарифма концентрации буфера носит линейный характер (рис. 7).
Рис 7. Концентрационная зависимость ЭОП.
Условия: кружок — боратный буфер, квадрат — фосфатный буфер (в каждом случае pH 8.0). А: ЭОП в зависимости от In концентрации буфера; В: ЭОП в зависимости от In ионной силы буфера.
ЭОП присутствует во всех электрофоретических методах разделения, так как никогда не удается полностью исключить возникновение поверхностных зарядов. Он может привести, с одной стороны, к концентрационному перемещению электрофоретических зон, однако, с другой стороны, играет существенную и иногда решающую роль при переносе зон через капилляр. Из-за постоянно существующего ЭОП при капиллярном электрофорезе детектор во всех случаях располагается в непосредственной близости от катода.
Анионы сами переносятся к катоду, соответственно скорость их электрофоретического перемещения ниже, чем скорость ЭОП. Таким образом, ЭОП позволяет проводить разделение катионных и анионных соединений в одном анализе (сравни с рис. 2). При других методах капиллярного электрофореза (например, при мицеллярной электрохроматографии) ЭОП используется исключительно для переноса проб (частично незаряженных) к детектору.
Благодаря химической модификации поверхности капилляров, ЭОП может контролироваться, исключаться или даже обращаться. Определение значения ЭОП служит единственной возможностью определить изменения на поверхности капилляров, например, благодаря необратимой адсорбции компонентов пробы. Все другие методы характеристики поверхности капилляров исключаются при очень небольших поверхностях (1 см2). Поверхностно-модифицированные капилляры не проявляют явлений гистерезиса при смене буферов и из-за незначительной адсорбции очень хорошо подходят для анализа белков (см. ниже).
За счет добавления длинноцепочечных катионных детергентов, таких как, например, цетилметиламмониевые соли, которые адсорбируются на силанольмых группах поверхности, можно осуществить даже обращение ЭОП. При этом образуется двойной слой детергента, обращенный положительным зарядом в направлении электролита. При использовании капилляров с такими покрытиями удается осуществлять разделение быстро перемещающихся неорганических ионов. Таблица 1 дает представление о возможностях влияния на ЭОП.
Изменение концентрации буфера представляется наиболее эффективной
и простой возможностью влиять на ЭОП разделительной системы. Чтобы оценить действие концентрации буфера на разделение, было проведено разделение тест-смеси, содержащей ионы с различными отрицательными зарядами в боратном буфере с концентрацией от 5 мМ до 100 мМ как при постоянном токе, так и при постоянном напряжении.Результаты испытаний представлены на рис. 8 и 9.
Рис. 8. Разделение тестовой смеси анионов при постоянном напряжении.
Условия: прибор — Весkmаn Р/АСЕ 2000; капилляр -75 мкм, поле: 227 В/см; буфер — борат, pH 9.5; ввод пробы — давлением, 2 с.; детектирование — 214 им; проба — бензоловый спирт (1), бензойная кислота (2), фталевая кислота (3), 1,3,5-бензолтрикарбоновая кислота (4).
Рис. 9. Разделение тестовой смеси анионов при постоянном токе.
Условия: прибор — Beckman Р/АСЕ 2000; капилляр — 75 мкм; поле — варьируется; буфер — борат, pH 9.5; ввод пробы — давлением, 2 с.; детектирование — 214 нм; проба — бензоловый спирт (1), бензойная кислота (2), фталевая кислота (3), 1,3,5-бензолтрикарбоновая кислота (4).
Благодаря этим измерениям было четко показано, что ЭОП увеличивается по мере уменьшения концентрации буфера и поэтому подходит для анализа сильно отрицательно заряженных, мигрирующих против ЭОП проб. При постоянном напряжении (10 кВ) и концентрации буфера 5 мМ бензолтрикарбоновая кислота еще может быть обнаружена, однако при том же самом времени анализа и концентрации буфера 50 мМ можно детектировать только бензойную кислоту При этом ток повышается с 10 до 130 мА. Аналогичное поведение можно наблюдать для веществ, подвергаемых разделению при постоянном токе (100 мА). Работая с буфером 10 мМ при 26 кВ, в течение 8 минут можно обнаружить все четыре тестовых вещества, в то время как в буфере 50 мМ удается детектировать только нейтральный маркер (бензиловый спирт). В этом буфере при максимальной силе тока 100 мА можно достигнуть напряжения лишь в 5.5 кВ. Если построить зависимость времени анализа от концентрации буфера, то можно отчетливо видеть параллельный ход кривых бензойной кислоты и бензилового спирта. Наивысшая скорость перемещения достигается при самой низкой концентрации буфера. Если рассчитать электрофоретическую подвижность бензойной кислоты, то она при различных концентрациях буфера остается постоянной, поэтому бензойная кислота может служить веществом-индикатором при качественном анализе.
Для уменьшения времени анализа или для анализа многозарядных анионов необходимо работать с буферами низкой концентрации и при щелочных значениях pH. Этот эффект представлен на рис. 10.
Рис. 10. Зависимость времени анализа от выбранной концентрации буфера.
Условия аналогичны рис. 8.
5. Уширение полос
Для описания уширения полос в КЭ используют известные хроматографические величины, употребляемые также для описания переноса в капиллярах. Так, число теоретических тарелок рассчитывается по аналогии с хроматографическими методами из ширимы пика и времени переноса.
Основной вклад в уширение полос при хроматографии в открытых трубках вносит профиль потока Хагена-Пуазейля. Этот вклад пропорционален квадрату диаметра капилляра и обратно пропорционален коэффициентам диффузии веществ в электролите (параметр С в уравнении Голея).