Интернет-журнал "Домашняя лаборатория", 2008 №4
Шрифт:
У человека может встречаться 3 варианта сочетания резус-аллелей. Человек, у которого 2 аллеля с присутствующим геном, имеет группу крови резус положительную (рис. 4 вверху). Если у человека на одной из хромосом ген отсутствует, то белок все равно синтезируется с гена на другой хромосоме; и резус-группа также положительная (рис. в середине). Белок не синтезируется только в том случае, когда ген отсутствует на обоих хромосомах. Только в этом случае группа крови резус-отрицательная (рис. 4 внизу).
Вопрос, который был задан, описывал ситуацию, когда оба родителя имеют два разных аллеля.
Стоит упомянуть о резус-конфликте. Его суть заключается в следующем. Если мать резус-отрицательна, ее муж резус-положительный, и ребенок наследует от отца Rh+, то в крови матери могут начать вырабатываться антитела против резус-фактора плода. При первой беременности этого обычно не происходит, но при родах возможен контакт с белками крови ребенка, и у матери могут появиться в крови антитела к резус-фактору. Тогда при следующей беременности резус-положительным плодом материнские антитела разрушат эритроциты ребенка. Это заболевание называется гемолитическая желтуха (ребенок рождается весь желтый и обычно вскоре умирает). Описано это заболевание впервые в 1609 году французской акушеркой. Когда была разработана процедура переливания крови, то таких детей научились спасать. Им делали заменное переливание крови, т. е. полностью сливали всю их кровь, и вводили новую. Теперь, когда установлены причины резус-конфликта, поступают следующим образом. Если во время беременности, у женщины кровь резус-отрицательна, а у мужа резус-положительна, следят за уровнем антител к резус-фактору и проводят необходимое лечение, если титр этих антител начинает возрастать. Стоит отметить, что если мать резус-положительна, а сам ребенок резус-отрицателен, то конфликта не происходит.
Я бы хотела отметить один из полученных ответов на этот вопрос. Когда мы составляли вопросы для лекций, мы получили реальный вопрос из газеты «АиФ» с просьбой разъяснить, в чем дело. Мы решили включить этот вопрос в опросник, с целью проверить, насколько наши слушателе знакомы с генетикой. Собственно, вопрос предполагался как чисто учебный. И вот один из ответов был следующим: «Я бы не рискнул отвечать на этот вопрос, так как я не специалист, а от моего ответа зависит семейное счастье человека». Хочется выразить уважение человеку, который так ответил на вопрос, потому что он воспринял контекст, в котором стояла чисто учебная задача. Он продемонстрировал понимание этических аспектов, связанных с наукой. Я думаю, вы понимаете, что существует ответственность ученого, и замечательно, что в вашей аудитории есть люди, которые уже сейчас настолько ясно понимают связь науки с реальной жизнью.
Молекулярные машины
Обычно курс биологии строится от изучения простого, составных частей, к все более сложному. Сначала изучают химический состав клеток; потом ДНК, РНК, белок; затем строение клетки.
Но начать мы решили с чего-то более близкого к человеку с физическим образованием. Честно говоря, когда я изучала биологию, эта тема меня просто поразила, она мне показалось одной из наиболее интересных. Поэтому я решила вас не томить, не откладывать такую интересную тему на потом, а начать наш курс с рассмотрения работы молекулярных машин. Сегодня мы рассмотрим некоторые молекулярные машины. Первая из них называется АТФ-синтаза. Она занимается в митохондриях синтезом аденозинтрифосфорной кислоты (АТФ). Напомню, что АТФ — это молекула, которая обеспечивает клетку энергией (рис. 5).
Для нас сейчас важно, зато молекула аденозинтрифосфорной кислоты содержит так называемую макроэргическую связь. Реакция синтеза представлена на схеме.
Из аденозиндифосфата
и фосфата получается АТФ, при этом образуется так называемая макроэргическая связь, и на ее образование затрачивается 30,6 кДж/моль (7,3 ккал/моль). АТФ обеспечивает энергией большинство происходящих в клетке процессов, так как при гидролизе макроэргической связи запасенная в ней энергия освобождается.Как же синтезируется эта молекула, то есть, как образуется макроэргическая связь между фосфатами? Это было одно время загадкой. Существовало предположение о том, что есть какое-то вещество X, химический посредник, осуществляет связь между процессами, дающими энергию, то есть окислением питательных веществ до СО2 и Н2О, и каким-то образом энергия окисления (в своем роде медленное "горение" внутри организма) переходит в энергию макроэргической связи в молекуле АТФ. Это предположение о наличии химического посредника, которого никто найти не мог, называлось гипотезой химического сопряжения (рис. 6).
Но в 1961 г. английский ученый Питер Митчелл предложил другое объяснение — хемиосмотическую гипотезу (подробнее мы о ней будем говорить позже), которая заключается в том, что вода, которая образуется в процессе окисления, образуется не в виде молекулы воды, а виде протона Н+ и иона гидроксила ОН– . Энергия, получаемая при окислении, идет на то, чтобы продукты реакции — протон и гидроксил — разделить в пространстве. Протон выбрасывается из митохондрий через внутреннюю мембрану в межмембранное пространство (сам по себе протон не может проникнуть через мембрану митохондрии, эта мембрана непроницаема для заряженных частиц), и гидроксогруппы, которая остается внутри митохондрии.
В результате возникает разница концентраций ионов водорода (ДрН — то есть кислотности среды) и разница потенциала: положительные заряды снаружи митохондриальной мембраны, а отрицательный внутри. Напомним, что у митохондрий 2 мембраны, причем внешняя в энергетических процессах такой важной роли, как внутренняя, не играет. То есть энергия, полученная при окислении, запасена в виде электрохимической энергии. Электрический потенциал на мембране митохондрий достигает 200 милливольт, а толщина мембраны не превышает 10 нм.
Питер Митчелл первый высказал предположение о том, что химические реакции в клетке пространственно упорядочены, и продукты реакции распределяются асимметрично: протон в одну сторону, гидроксил в другую. За счет этого появляется электрохимический потенциал на мембране (обозначается Лун). Он состоит из химической (ДрН — разница в концентрации протонов) и электрической (Дер — разница в величине заряда) компоненты ДрН = ДрН + Дер. Электрохимический потенциал на мембране митохондрий — универсальная форма запасания энергии клеткой.
Протоны могут перекачиваться через мембрану и при фотосинтезе в хлоропластах или в клетках фотосинтезирующих бактерий (Рис. 8).
На рисунке представлена довольно простая система бактериального фотосинтеза, сопряженного с синтезом АТФ на примере галобактерий. Галобактерии живут в Мертвом море. Море настолько соленое, что соль выпадает в осадок, но в таких экстремальных условиях галобактерии прекрасно себя чувствуют. Галобактерии используют фотосинтез для получения энергии. Белок бактериородопсин под действием света выкачивает протоны изнутри бактериальной клетки наружу, и на мембране снаружи избыток протонов, и, соответственно, образуется положительный заряд. То есть в данном случае электрохимический потенциал на мембране бактерии возникает не за счет окисления веществ в процессе дыхания, а за счет работы, связанной со световой энергией.