Чтение онлайн

ЖАНРЫ

Искусство схемотехники. Том 2 (Изд.4-е)
Шрифт:

Генераторы, управляемые напряжением. Важным компонентом ФАПЧ является генератор, частотой которого можно управлять, используя выходной сигнал фазового детектора. Некоторые ИМС ФАПЧ содержат ГУН (например, линейный элемент 565 и КМОП-элемент 4046). Кроме того, имеются отдельные ИМС ГУН, перечисленные в табл. 5.4. Интересный класс ГУН составляют элементы с синусоидальным выходом (8038, 2206 и т. п.), поскольку они позволяют генерировать чистое синусоидальное колебание, засинхронизированное с входным колебанием «страшного» вида. Следует упомянуть еще один класс ГУН, — «преобразователи напряжения в частоту», которые обычно проектируются с оптимальной линейностью; они имеют, как правило, скромную максимальную частоту (до 1 МГц) и вырабатывают импульсы с логическими уровнями (см. разд. 5.15).

Следует

помнить о том, что частота ГУН не ограничивается скоростью срабатывания логических схем. Можно, например, использовать радиочастотные генераторы, настраиваемые с помощью варактора (диод с изменяемой емкостью) (рис. 9.71).

Рис. 9.71.

Продвигаясь в соответствии с этой идеей еще на один шаг, можно было бы даже использовать такой элемент, как отражательный клистрон, — микроволновый (гигагерцевый) генератор, с электрической настройкой за счет изменения напряжения на отражателе. Разумеется, ФАПЧ, использующая такие генераторы, потребует радиочастотный фазовый детектор.

Зависимость частоты от управляющего напряжения ГУН, используемого в ФАПЧ, может не обладать высокой линейностью, однако в случае большой нелинейности коэффициент усиления в контуре будет изменяться в соответствии с частотой сигнала и придется обеспечивать больший запас устойчивости.

9.28. Проектирование ФАПЧ

Замыкание контура регулирования. Фазовый детектор вырабатывает сигнал ошибки, соответствующий фазовому рассогласованию между входным и опорным сигналами. Частотой ГУН можно управлять, подавая на его вход соответствующее напряжение. Казалось бы, что здесь можно поступить также, как и в любом другом усилителе с обратной связью, вводя контур регулирования с некоторым коэффициентом передачи; мы поступали точно также в схемах с операционными усилителями.

Однако имеется одно существенное отличие. Ранее, регулируемая с помощью обратной связи величина совпадала с величиной, измеряемой с целью формирования сигнала ошибки или была по крайней мере ей пропорциональна. В усилителе напряжения, например, мы измеряли выходное напряжение и соответствующим образом подстраивали входное. В системах ФАПЧ осуществляется интегрирование; мы измеряем фазу, а регулируем частоту, но фаза является интегралом от частоты. За счет этого в контуре регулирования появляется фазовый сдвиг 90°.

Такой интегратор, включенный в контур обратной связи, существенным образом влияет на работу схемы — дополнительное запаздывание по фазе на 90° на частотах, где коэффициент усиления равен единице, вызывает возникновение самовозбуждения. Простое решение заключается в том, чтобы не включать в контур компоненты, которые дают дополнительное запаздывание по фазе, по крайней мере на тех частотах, где коэффициент усиления близок к единице. В конце концов операционные усилители имеют запаздывание по фазе 90° на большинстве частот своего диапазона, однако они превосходно работают. Это — один из подходов и он приводит к тому, что называется «контуром первого порядка». Блок-схема в этом случае выглядит точно также, как ранее приведенная блок-схема ФАПЧ без фильтра нижних частот.

Хотя контуры первого порядка во многих ситуациях очень удобны, они не обладают необходимыми свойствами «маховика», которые позволяют генератору, управляемому напряжением, сглаживать помехи и флуктуации входного сигнала. Более того, контур первого порядка не сохраняет постоянным фазовое соотношение между опорным сигналом и сигналом ГУН, так как выход фазового детектора непосредственно управляет ГУН. В «контур второго порядка» вводится дополнительная фильтрация на низкой частоте с целью предотвращения неустойчивости. Такой контур обладает свойством «маховика» и, кроме того, уменьшает «диапазон захвата» и увеличивает время захвата. К тому же, как будет показано ниже, при использовании фазовых детекторов типа 2 контур второго порядка гарантирует фазовую синхронизации при нулевой разности фаз между опорным сигналом и сигналом ГУН. Практически во всех системах применяют контуры второго порядка, поскольку в большинстве применений система ФАПЧ должна обеспечивать

малые флуктуации фазы выходного сигнала, а также обладать некоторыми свойствами памяти или «маховика». Контуры второго порядка могут иметь высокий коэффициент передачи на низких частотах, что обеспечивает повышенную устойчивость (по аналогии с достоинствами высокого коэффициента усиления в усилителях с обратной связью). Вернемся к делу и рассмотрим применение ФАПЧ на примерах.

9.29. Пример разработки: умножитель частоты

Формирование частоты, кратной фиксированной входной частоте, является одним из наиболее распространенных применений ФАПЧ. В частотных синтезаторах частота выходного сигнала формируется за счет умножения частоты стабильного низкочастотного (допустим, 1 Гц) сигнала на целое число n; число n можно задавать в цифровом виде, т. е. вы получаете гибкий источник сигналов, которым можно управлять даже с помощью компьютера.

Можно использовать ФАПЧ в более прозаических системах, например, для того чтобы генерировать тактовую частоту, синхронизированную с некоторой другой эталонной частотой, которая уже имеется в приборе. Предположим, что мы хотим получить тактовые сигналы частотой 61440 Гц для двухстадийного АЦП. Такая частота обеспечивает производительность 7,5 измерений в секунду, причем на первой стадии (подъеме) потребуется 4096 периодов синхронизации (напомним, что в двухстадийном преобразовании используется постоянный временной интервал) и на второй стадии (разряд постоянным током) может потребоваться до 4096 периодов. Уникальная особенность схемы ФАПЧ заключается в том, что тактовую частоту 61440 кГц можно засинхронизировать с сетевой частотой 60 Гц (61440 = 60x1024), полностью подавив тем самым помехи на частоте 60 Гц, которые, как мы уже обсуждали в разд. 9.21, присутствуют на любом сигнальном входе преобразователя.

Начнем со стандартной схемы ФАПЧ, в которой между выходом ГУН и фазовым детектором включен счетчик-делитель на n (рис. 9.72).

Рис. 9.72. Блок-схема умножителя частоты.

На этой схеме для каждого функционального блока указан коэффициент передачи. Это понадобится нам для проведения расчетов по устойчивости. Обратите особое внимание на то, что фазовый детектор преобразует фазу в напряжение, а ГУН — напряжение в производную фазы по времени (т. е. частоту). Отсюда важное следствие — если фазу в самой нижней части схемы рассматривать как переменную, то ГУН будет действовать как интегратор. Фиксированное входное напряжение рассогласования приводит к линейно возрастающему фазовому рассогласованию на выходе ГУН. Фильтр нижних частот и делитель на n имеют коэффициенты передачи меньше единицы.

Устойчивость и фазовые сдвиги. На рис. 9.73 показаны диаграммы Боде, с помощью которых можно оценить устойчивость ФАПЧ второго порядка. ГУН работает как интегратор с характеристикой 1/f и запаздывающим фазовым сдвигом 90° (т. е. его характеристика пропорциональна 1/f, а конденсатор заряжается от источника тока). Для того чтобы иметь приличный запас по фазе (разность между 180° и фазовым сдвигом на частоте, при которой общий коэффициент передачи контура равен 1), в фильтр нижних частот последовательно с конденсатором включают резистор для того, чтобы приостановить спад характеристики на некоторой частоте (с причудливым названием «нуль»).

Комбинация этих двух характеристик дает показанную на рисунке характеристику контура. До тех пор пока спад коэффициента передачи контура будет составлять 6 дБ/октава (в области единичного коэффициента передачи), контур будет устойчив. Это делается с помощью фильтра нижних частот по типу «опережение — отставание» с соответствующим образом выбранными свойствами (точно также, как компенсация опережения-отставания в операционных усилителях). Дальше вы увидите, как это делается.

Поделиться с друзьями: