Истина и красота. Всемирная история симметрии.
Шрифт:
Такое состояние — сущий кошмар для каждого ученого: по видимости неопровержимая идея, которая вроде бы ведет в правильном направлении, на деле заводит в ужасные дебри. Устранить такую ошибку отчаянно трудно, ведь вы уверены, что никакой ошибки нет. Часто даже не удается понять, какие именно допущения вы незаметно сделали.
К концу 1914 года Эйнштейн наконец осознал, что полевые уравнения не могут определять метрику единственным образом, потому что имеется возможность выбора различных систем координат: это не влияет на физику, но меняет формулу для метрики. Он все еще не знал о тождествах Бьянки, но теперь они ему были не нужны. Он наконец понял, что имеется свобода в выборе любых координат из соображений удобства.
18 ноября 1914 года Эйнштейн открыл
Второе предсказание требовало для своего подтверждения или опровержения новых наблюдений; то была прекрасная новость, поскольку новые наблюдения — это лучшая проверка новых теорий. Согласно теории Эйнштейна, гравитация должна изгибать свет.
Геометрия этого эффекта проста и имеет дело с геодезическими — кратчайшими — путями между двумя точками. Если растянуть струну и приподнять ее, она примет вид прямой линии; это происходит потому, что в эвклидовом пространстве прямая линия является геодезической. Если, однако, два конца струны прижать к поверхности футбольного мяча, сильно ее при этом натянув, то она примет форму кривой, лежащей на поверхности мяча. Геодезические линии на искривленном пространстве — мяче — сами искривлены. То же происходит и в искривленном пространстве-времени, хотя подробности слегка отличны.
Физические обстоятельства, в которых этот эффект может проявиться, также «прямолинейны». Звезда, подобная Солнцу, будет изгибать любой свет, проходящий мимо нее. Единственным в то время способом наблюдать этот эффект было дождаться солнечного затмения, когда свет Солнца более не забивает свет от звезды, расположенной на небосводе близко к краю солнечного диска. Если Эйнштейн был прав, то кажущиеся положения таких звезд должны были слегка сдвинуться по сравнению с их положениями, когда они не находятся на одной линии с Солнцем.
Количественный анализ этого явления куда менее прямолинеен. Первая попытка Эйнштейна, предпринятая в 1911 году, предсказывала сдвиг в пределах угловой секунды. Ньютон предсказал бы близкое число, основываясь на своем убеждении, что свет состоит из мельчайших частиц: сила гравитации должна притягивать частицы, вызывая изгиб их траектории. Но в 1915 году Эйнштейн получил результат, в соответствии с которым в его новой теории свет должен отклониться на вдвое больший угол — на 1,74 угловой секунды.
Перспектива выбора между Ньютоном и Эйнштейном стала реальностью. 25 ноября 1914 года Эйнштейн записал свои полевые уравнения в их окончательном виде. Эти уравнения Эйнштейнасоставляют основу общей теории относительности — релятивистской теории гравитации. Они записываются в математическом формализме, известном как тензоры(некоторым образом нагроможденные друг на друга матрицы). Уравнения Эйнштейна говорят нам, что тензор Эйнштейна пропорционален скорости изменения тензора энергии-импульса [63] . Другими словами, кривизна пространства-времени пропорциональна степени присутствия материи. Эти уравнения подчиняются некоторому принципу симметрии, но он сугубо локален. В малых областях пространства-времени у них те же симметрии, что в специальной теории относительности, при условии, что во внимание принимается локальное влияние кривизны.
63
Ошибка автора.
Скорость изменения здесь ни при чем. Тензор Эйнштейна пропорционалентензору энергии-импульса, и все. Кстати, тензор Эйнштейна — это «почти» упоминавшийся выше тензор Риччи, отсюда и его связь с кривизной, упомянутая в следующей фразе. (Примеч. перев.)Эйнштейн заметил, что сделанные им второстепенные изменения не повлияли на его вычисления движения перигелия Меркурия и отклонения света звезд. Он представил свои уравнения Прусской Академии — и выяснил, что математик Давид Гильберт уже демонстрировал в точности такие же уравнения, но только утверждал, что это нечто намного большее, чем теория гравитации. На самом деле он утверждал, что они включают в себя электромагнитные уравнения, а это было ошибкой. Снова потрясает тот факт, что ведущие математики были предельно близки к тому, чтобы обойти Эйнштейна на финишной прямой.
Было предпринято несколько попыток проверить предсказание Эйнштейна об отклонении света гравитационным полем Солнца. Первой попытке — в Бразилии — помешал дождь. В 1914 году немецкая экспедиция отправилась наблюдать затмение в Крым, но началась Первая мировая война, и им было приказано возвращаться домой, и побыстрее. Некоторые вернулись, других арестовали, но в конце концов все добрались домой целыми и невредимыми. Естественно, никаких наблюдений провести не удалось.
Война не дала провести наблюдения и в Венесуэле в 1916 году. Американцы предприняли еще одну попытку в 1918-м, но с неубедительными результатами. Наконец, британская экспедиция, которую возглавил Артур Эддингтон, добилась успеха в мае 1919 года, но они не объявляли о своих результатах до ноября.
Когда же результаты были объявлены, вердикт был в пользу Эйнштейна, а не Ньютона. Отклонение имелось, оно было слишком большим, чтобы соответствовать ньютоновской модели, и оно прекрасно укладывалось в модель Эйнштейна.
Задним числом можно сказать, что результаты эксперимента были не столь уж решающими, как могло показаться. Экспериментальная ошибка была довольно велика, и лучшее, что удавалось заключить, — это что Эйнштейн, по всей видимости,прав. (Более свежие наблюдения с применением более совершенных методов и оборудования подтвердили теорию Эйнштейна.) Но в то время их представили как совершенно определенные, и средства массовой информации буквально взорвались. Человек, способный доказать неправоту Ньютона, определенно был гением. Тот, кому удалось открыть радикально новую физику, должен был быть величайшим из живущих ученых.
Так родилась легенда. Эйнштейн написал о своих идеях в Times of London.Через несколько дней на редакционной странице появился отклик:
Это по-настоящему шокирующая новость, и она заставляет усомниться даже в том, что наша вера в таблицу умножения так уж обоснованна. Потребуется не менее двух председателей двух Королевских Обществ, чтобы заявления о наличии веса у света и пределов у пространства приобрели некоторое правдоподобие — чтобы о подобном вообще можно было подумать. Это не так по определению — и дело с концом. Таким образом, во всяком случае, обстоит дело для обычных людей, как бы оно ни обстояло для высокоученых математиков.
Но высокоученые математики оказались правы. Вскоре Timesсообщила миру, что «только двенадцать людей в состоянии понять теорию „внезапно ставшего знаменитым д-ра Эйнштейна“» — миф, который продолжал циркулировать, даже когда многочисленные студенты-физики уже рутинно изучали эту теорию.
В 1920 году у Гроссманна появились первые признаки рассеянного склероза. Он написал свою последнюю статью в 1930-м, а в 1936-м умер. Эйнштейн стал наиболее превозносимым физиком двадцатого столетия. Позднее в жизни он свыкся со своей славой, находя ее довольно занятной. На ранних этапах ему, по-видимому, нравилось общаться со средствами массовой информации.