Чтение онлайн

ЖАНРЫ

Как были открыты химические элементы
Шрифт:

История порой удивительно предвосхищает будущее. Аргон еще окончательно не открыт, а 24 мая 1894 г. В. Рамзай пишет письмо Дж. Рэлею, в котором спрашивает своего коллегу: не приходило ли ему в голову, что в периодической таблице есть места для газообразных элементов? Например:

В. Рамзай допускал, что в малом периоде системы элементов Д. И. Менделеева может быть такая же триада элементов, как триады железа и платиновых металлов в больших периодах. Открытия аргона и гелия наводили на мысль, что эти газы могут занять места двух X. Но величины атомных масс этих элементов (соответственно 4 и 40) оказались слишком различными, чтобы символы Не и А могли соседствовать в одном периоде. Постепенно идея новых триад отошла на задний план, и В. Рамзай стал склоняться к другой идее, что инертные газы как бы располагаются на концах каждого периода. В таком случае между гелием и аргоном можно было ждать промежуточного элемента с атомной массой около 20. О нем-то и произнес речь В. Рамзай в августе 1897 г. на заседании Британской ассоциации в Торонто. Речь носила знаменательное название «Неоткрытый газ». Как говорил Рамзай, предметом его сообщения является новый газ. Он хотел описать его интересные свойства, но считал

неблагоразумным скрывать от слушателей, что одно из самых замечательных свойств — это то, что он еще не открыт.

И опять мы чувствуем такую же уверенность, которая сквозила в письме В. Рамзая жене накануне открытия аргона. Но теперь то была уже не дерзость романтика, а убежденность, помноженная на опыт. Этот неоткрытый газ впоследствии оказался неоном. Но по прихотливому стечению обстоятельств, что нередко бывает в науке, открытию предшествовало другое событие. Обнаружить новый газ, очевидно, можно было путем постепенного испарения жидкого воздуха и анализа соответствующих фракций, причем особый интерес представляли фракции более легкие, чем аргон. 24 мая 1898 г. В. Рамзай и М. Траверс получили сосуд Дьюара с жидким воздухом. К несчастью (а вероятно, и к счастью), воздуха оказалось слишком мало, чтобы заняться поисками предшественника аргона. Поэтому ученые решили использовать материал для отработки техники разделения жидкого воздуха. Проведя эту операцию, В. Рамзай и М. Траверс обнаружили к исходу дня, что в их распоряжении осталась наиболее тяжелая фракция.

Целую неделю она не привлекала внимания, пока 31 мая В. Рамзай не решил взяться за нее. Газ был очищен от возможных примесей азота и кислорода и подвергнут спектральному анализу. В. Рамзай и М. Траверс были бесконечно удивлены, когда увидели в спектре яркую желтую линию, которая не могла принадлежать ни гелию, ни натрию. В. Рамзай записал в дневнике: «31 мая. Новый газ. Криптон». Вспомните, что под этим именем некоторое время фигурировал будущий гелий. Теперь же это название окончательно вошло в историю инертных газов. Однако криптон оказался не тем неоткрытым газом, о котором говорил в своей речи В. Рамзай. Его плотность была больше, чем следовало из расчетов; большей величиной характеризовалась и атомная масса.

Открытие неона последовало незамедлительно. В. Рамзай и М. Траверс при перегонке воздуха отобрали легкие фракции, и в одной из них был обнаружен очередной инертный газ. По воспоминаниям В. Рамзая, имя «неон» (от греческого слова неос — «новый») предложил Вильям Рамзай-младший (двенадцатилетний сын ученого). Непосредственное наблюдение в данном случае осуществлял один М. Траверс (В. Рамзай отсутствовал). Это было 7 июня. Затем целая неделя ушла на подтверждение результатов, получение бoльших количеств неона и определение его плотности. Неон, как и ожидалось, оказался промежуточным между гелием и аргоном, хотя в чистом виде он пока не был выделен. Решить задачу полного разделения неона и аргона удалось позднее.

Теперь В. Рамзаю и М. Траверсу осталось обнаружить еще одного представителя плеяды инертных газов, но здесь оба исследователя не испытывали такой же уверенности, как перед открытием неона. В один из дней июля 1898 г. коллеги в очередной раз занимались перегонкой жидкого воздуха и разделением его на отдельные фракции. Более 50 фракций отобрали В. Рамзай и М. Траверс к полуночи; в последней из них (№ 56) обнаружили криптон. После этого была отобрана еще одна фракция (№ 57), полученная при нагревании аппарата и состоявшая главным образом из следов углекислого газа. В. Рамзай и М. Траверс заспорили, стоит ли проводить ее исследование, и решили вопрос положительно. Утром ученые наблюдали спектр фракции № 57. Он оказался своеобразным. Скорее всего, это новый газ, заключили они. Однако чистый ксенон был получен лишь в середине 1900 г. Название «ксенон» происходит от греческого слова ксенос, означающего «незнакомец».

ИНЕРТНЫЕ ГАЗЫ КАК ПОВОД ДЛЯ РАЗМЫШЛЕНИЯ

Открытие инертных газов всегда называют среди четырех великих научных событий конца XIX в., приведших к революции в естествознании, наряду с открытием Х– лучей (рентгеновского излучения), явления радиоактивности и электрона. И это предпочтение, которое оказывают историки науки инертным газам, обусловлено многими причинами.

Удивительно яркой и феерической выглядит сама история их открытия. Загадочный солнечный элемент гелий был обнаружен на Земле, и один только этот факт подчеркнул, насколько более изобретательным и зорким стал человек в своем стремлении глубже и лучше понять природу.

Не менее поначалу загадочный аргон вселил смуту в умы ученых. Его химическая инертность словно и не давала оснований считать его элементом в обычном понимании, ибо он не проявлял химических свойств. Но исследователям пришлось привыкнуть к этой необычной ситуации и утвердиться в мысли, что могут быть элементы, неспособные к химическим взаимодействиям. Подобная мысль явилась очень плодотворной. Инертные газы способствовали представлениям о нулевой валентности. Они, далее, придали дополнительную стройность структуре периодической системы, образовав ее самостоятельную нулевую группу. Они спустя почти четверть века после своего открытия помогли Н. Бору развить теорию строения электронных оболочек атомов. Эта теория в свою очередь объяснила их инертность. А устройство атомов инертных газов легло в основу представлений об ионной и ковалентной связи. Итак, теоретическая химия многим обязана открытию этих элементов.

В начале 60-х годов они еще раз поразили научный мир. Ученые доказали, что ксенон (главным образом) и криптон все-таки способны образовывать химические соединения. Теперь их известно уже более 150. Парадоксальность столь позднего развенчания мифа о полной химической бездеятельности инертных газов очевидна и представляет любопытный штрих их истории.

Инертные газы относятся к числу наиболее редких стабильных элементов, существующих на Земле. Вот сведения, которые приводил еще сам В. Рамзай. Один объем гелия приходится на 245 000 объемов атмосферного воздуха, неона — на 81 000 000, аргона — на 106, криптона — на 20 000 000 и ксенона — на 170 000 000. С тех пор эти числа почти не изменились. В. Рамзай сказал как-то, что ксенона в воздухе меньше, чем золота в морской воде. Одна эта фраза стоит многих разглагольствований о том, сколь мучительным было познание инертных газов.

ГЛАВА IX.

ЭЛЕМЕНТЫ, ПРЕДСКАЗАННЫЕ НА ОСНОВЕ ПЕРИОДИЧЕСКОЙ СИСТЕМЫ (ГАЛЛИЙ, СКАНДИЙ, ГЕРМАНИЙ)

«Без

периодического закона мы не имели никаких поводов предсказывать свойства неизвестных элементов, даже не могли судить о недостатке или отсутствии тех или других из них. Открытие элементов было делом одного наблюдения. И оттого-то только слепой случай и особая прозорливость и наблюдательность вели к открытию новых элементов… Закон периодичности открывает в этом… отношении новый путь» [7] — этими словами Д. И. Менделеев четко высказал мысль о том, что в истории химических элементов наступило время, когда стало возможным заранее предвидеть существование еще не открытых элементов и оценивать их важнейшие свойства.

7

Менделеев Д. И. Периодический закон. Основные статьи. Серия «Классики науки». М., 1958, с. 149–150.

Основу для этого давала периодическая система. Уже из самой ее структуры было в той или иной степени видно, где находятся пробелы, отвечающие неизвестным элементам. Зная же свойства их известных соседей по системе, можно было посредством логических рассуждений и простых арифметических операций оценить наиболее характерные свойства незнакомых элементов, рассчитать некоторые количественные параметры (атомная масса, плотность, температура плавления и кипения и т. д.). Но для этого требовалась громадная эрудиция в области химии. Ею обладал в полной мере Д. И. Менделеев. Помноженная на научную смелость и веру в справедливость закона периодичности, эрудиция великого ученого позволила ему сделать блестящие предсказания существования и свойств некоторых новых элементов.

Гениальные предвидения Д. И. Менделеева уже давно стали хрестоматийными, и ни один учебник химии не обходится без упоминания менделеевских прогнозов экаалюминия, экабора и экасилиция, которые впоследствии воплотились в галлий, скандий и германий.

Посмотрите на те сопоставления, которые приводятся ниже.

Экаалюминий Еа Галлий Ga
Атомная масса ? 68 Атомная масса 69,72
Простое тело должно быть низкоплавкое Температура плавления 29,75°C
Плотность металла близка к 6,0 Плотность 5,9 (тв.)
Объем атома должен быть близок к 11,5 Атомный объем 11,8
На воздухе не изменяется Слабо окисляется при красном калении
Должен разлагать воду при кипячении Разлагает воду при высокой температуре
Образует квасцы, но труднее, чем Al Дает квасцы NH4Ga(SO4)2•12Н2О
Еа2О3 должна легко восстанавливаться до металла Ga легко восстанавливается прокаливанием Ga2O3 в токе водорода
Еа более летуч, чем Al, будет открыт методом спектрального анализа Ga открыт спектроскопическим методом
Экабор Eb Скандий Sc
Атомная масса ? 44 Атомная масса 45,1
Плотность ? 3,0 Плотность 3,0
Объем атома около 15 Атомный объем 15
Металл нелетуч и не может быть открыт спектральным анализом Летучесть низкая
Образует основной оксид Образует основной оксид
Воду будет разлагать при повышенной температуре Разлагает воду при кипении
Eb2О3 в воде нерастворима, плотность ? 3,5 Sc2O3 в воде не растворяется, плотность 3,864
Eb2О3 с большим трудом образует квасцы Sc2O3 образует двойную соль 3К24•Sc2(SO4)3
Экасилиций Es Германий Ge
Атомная масса ? 72 Атомная масса 72,60
Плотность ? 5,5 Плотность 5,327
Атомный объем ? 13 Атомный объем 13,57
Плотность EsO2 ? 4,7 Плотность GeO2 4,280
Основные свойства выражены слабо GeO2 имеет амфотерный характер
EsCl4 будет жидкостью, температура кипения ?90°C GeCl4 — жидкость, температура кипения 83°C
Способность Es раскисляться низкая Ge с трудом образует низшие степени окисления
Существует непрочное соединение EsH4 Получен легкоразлагающийся GeH4
Существует металлоорганическое соединение Es(C2H5)4 Известно Ge(C2H5)4
Поделиться с друзьями: