Как люди открывали свою землю
Шрифт:
Космическая океанология
За тридцать лет космической эры ученые убедились, что исследование Земли из космоса дает такие возможности, каких им не получить никаким иным путем. Напомню еще раз: площадь Мирового океана — более 360 миллионов квадратных километров! А сколько может изучить одно научно-исследовательское судно за один, пусть даже многомесячный, рейс? И совсем другое дело — исследование океана с борта искусственного спутника Земли или с орбитальной станции.
Подсчитано, например, что определение одной лишь температуры поверхности Мирового океана (а это один из важнейших параметров для исследователей), проведенное не космическими методами, требует одновременной работы в океанах 20 тысяч научно-исследовательских
Огромная обзорность и информативность — вот главные достоинства и принципиальные отличия космических методов изучения от наземных. И они особенно полезны оказались океанологии на современном этапе.
У вас может возникнуть вопрос: «Какие же задачи конкретно под силу космическим методам?» Что ж, приведу несколько примеров. Возьмем хотя бы распределение хлорофилла в океане — в глобальном масштабе. На уроках в школе вам наверняка рассказывали, что хлорофилл — это зеленое вещество, которое преобразует солнечный свет в биомассу, то есть помогает растениям строить свой организм. Это, можно сказать, основа всей жизни. Хлорофилл входит в состав всех растений на суше и в микроскопические водоросли — фитопланктон, — обитающие в океанской воде. Они пополняют запасы кислорода в атмосфере Земли. Они же служат и первым звеном пищевой цепи. Фитопланктон служит пищей зоопланктону, который, в свою очередь, идет на обед рыбам и моллюскам. А те составляют наш с вами рацион.
Значит, чем больше хлорофилла в воде, тем больше и рыбы, тем богаче район океана.
Первые целенаправленные космические исследования поверхности Мирового океана были выполнены с борта орбитальной космической станции «Салют-6» и с помощью искусственных спутников Земли «Интеркосмос-20» и «Интеркосмос-21». На борту космических аппаратов размещалась сложная аппаратура, разработанная в Советском Союзе и в социалистических странах. Американские ученые пользовались результатами, полученными с помощью спутника «Нимбус-7».
Даже самые первые результаты всех этих исследований были прекрасными. А сейчас разрабатываются уже совсем новые методы глубинного зондирования океана из космоса. Оно будет проводиться с помощью так называемых лидаров, или лазерных локаторов, работающих в оптическом диапазоне.
Спутники помогают определить границы штормовых районов в океане и границы плавающих льдов. Можно легко себе представить, насколько ценна такая информация для штурманов, прокладывающих маршруты судам, особенно в высоких широтах. Спутники сообщают о нефтяных загрязнениях океана, несут экологическую службу Земли.
Есть в океане одно загадочное, до сих пор до конца не выясненное явление — внутренние волны. Возникают они в океанских глубинах там, где меняется плотность слоев океанской воды. А сила их такова, что некоторые специалисты считают именно внутренние волны повинными в гибели американской атомной подводной лодки «Трэшер».
Внутренние волны способствуют распространению звука в толще океанских вод. Вы ведь знаете, наверное, что звук — главный инструмент в исследованиях океанологов. Свет и радиоволны чрезвычайно быстро затухают в воде. А звук распространяется даже лучше, чем в атмосфере. Ученые обнаружили, что в глубинах океана могут создаваться такие подводные звуковые каналы-волноводы, по которым звук пробегает многие тысячи километров. Вот только путь его не прям, а весьма прихотлив и извилист. Как же изучить законы движения звука в воде, как узнать, по каким путям бежать ему легче, по каким — труднее? Ведь с поверхности внутренние волны не видны…
И вот оказалось, что они довольно точно проектируются на водную гладь, но видно это только с большой высоты, из космоса. Где видна рябь, там находится гребень внутренней волны, где поверхность воды гладкая — там ее впадина. Наши космонавты зарегистрировали внутренние волны у побережья Камчатки, у Галапагосских островов, у берегов
Колумбии и в Арафуртском море между Новой Гвинеей и берегами Австралии.Иногда информация космонавтов ставила ученых в тупик. Например, еще во время самых первых полетов космонавты докладывали, что прекрасно различают невооруженным глазом на поверхности океана суда и прочие мелкие предметы. Я говорю «мелкие», потому что нужно учитывать, с какой высоты на них смотрят.
В это было невозможно поверить. И прошло немало времени, прежде чем появились какие-то объяснения. Этому, как теперь считают, способствует определенное состояние атмосферы.
А вот другой пример: во время сеансов связи экипажи не раз уверяли, что видят подводные океанические хребты, которые идут по дну, на глубинах сотен и даже, может быть, тысяч метров. Специалисты-оптики в один голос уверяют, что это невозможно. Ведь даже самая прозрачная океанская вода на глубине в 100–200 метров должна полностью поглотить солнечный свет. Так что же тогда видят космонавты?.. Предположений много, но точного ответа пока нет.
Наши «космические братья» В. Ляхов и В. Рюмин с борта станции «Салют-6» видели в Индийском океане какое-то непонятное «вздыбливание» воды. Будто на протяжении доброй сотни километров столкнулись две волны, идущие навстречу друг другу.
Но такого явления в природе быть просто не может. Значит, еще одна загадка…
Каждый полет, каждая фотография, переданная с борта космического корабля или орбитальной станции, переданная специальным океанологическим спутником, приносит нам новые сведения о его величестве Мировом океане. И приносит новые загадки, только успевай разгадывать…
«Полигон» + моде = сотрудничество!
На пороге 70-х годов ученые всего мира, изучающие океан, пришли к выводу, что «накопленные (в океане. — А. Т.) наблюдения не могут заменить целенаправленного эксперимента». И в 1970 году советские исследователи вышли в Атлантику с планом эксперимента «Полигон-70». Что он собой представлял?
В океане, в зоне Северного Пассатного течения, что проходит севернее островов Зеленого Мыса, выделили огромный квадрат площадью 40 тысяч квадратных километров. В нем по двум перпендикулярно пересекающимся прямым расположили 17 автономных буйковых станций, 6 научно-исследовательских судов более полугода бороздили воды этого полигона. Цель — изучить переменчивость океанских течений. Ученые давно уже подозревали, что русла этих океанских рек без берегов не столь постоянны. И это подозрение подтвердилось.
Советские исследователи обнаружили гигантские водяные вихри. Похожие на атмосферные циклоны и антициклоны, они прихотливо перемещались по открытому водному пространству.
С марта 1973 года подобные же наблюдения сделала и американская экспедиция, приступившая вслед за нами к своему Срединно-океаническому динамическому эксперименту. Сокращенно это название выглядело как МОДЕ-1.
Открытия экспедиций, работавших каждая по своей программе, оказались столь интересными, неожиданными и значительными, что вскоре было принято решение продолжить их в рамках совместного международного эксперимента ПОЛИМОДЕ. Сначала эта программа считалась только советско-американской. Но вскоре к ней присоединились канадцы, за ними англичане и французы. Большой интерес проявили ученые ФРГ и Японии. Впрочем, это не удивительно, потому что сегодня изучение синоптических вихрей — именно так назвали обнаруженные гигантские круговороты — одна из ведущих задач океанологии.
Совместный эксперимент ПОЛИМОДЕ по своим результатам занимает вполне достойное место среди самых выдающихся исследований в Мировом океане как прошлого, так и настоящего времени. При этом его успех показывает, как важно объединение усилий нескольких стран в мировой научной практике. Ведь именно это — путь ускоренного прогресса в науке всего человечества, тогда как конфронтация, нагнетание атмосферы недоверия и подозрительности тормозят познание на всех его гуманистических направлениях.