Котлы тепловых электростанций и защита атмосферы
Шрифт:
Рис. 3.4. Определение оптимальной тонкости пыли
3.1.3. Пылесистемы и углеразмольные мельницы
Для размола топлива можно использовать центральные или индивидуальные системы пылеприготовления. В первом случае вблизи главного корпуса электростанции сооружается центральный пылезавод (ЦПЗ), на котором организованы сушка и размол топлива для всех котлов ТЭС. Готовая угольная пыль специальным насосом подается в пылевые бункеры каждого котла, а из них – к горелкам котельных установок. Достоинством ЦПЗ является независимость работы котлов от нагрузки систем пылеприготовления,
Вместе с тем, сооружение ЦПЗ требует значительных капитальных затрат, а эксплуатационные расходы часто превышают достигнутый экономический эффект даже при использовании высоковлажных топлив: для сушки топлива на ЦПЗ обычно используется пар из отборов паровой турбины. В России практически единственным объектом с работающим ЦПЗ является II очередь Назаровской ГРЭС (два котла П-49, обеспечивающие паром блок мощностью 500 МВт).
Индивидуальные системы пылеприготовления располагают в главном корпусе ТЭС, рядом с котлами, для которых размалывается уголь. Для сушки топлива в них используются горячий воздух или смесь воздуха с дымовыми газами из этого же котла. Различают индивидуальные системы пылеприготовления с прямым вдуванием и с промежуточным бункером.
Первый, наиболее простой вариант предполагает, что сушильный агент (воздух или газовоздушная смесь, а также выделившиеся из угля водяные пары) транспортирует угольную пыль к горелкам (рис. 3.5). Второй вариант более сложен: он предполагает наличие циклона, в котором угольная пыль после мельницы почти полностью отделяется от сушильного агента (рис. 3.6). После этого уловленная в циклоне угольная пыль поступает в пылевой бункер, из которого она пылепитателями с регулируемым числом оборотов подается к горелкам. Причем возможны разные варианты: на этом участке транспортирующим агентом может быть горячий воздух (в данном случае сушильный агент с тонкими фракциями угля, не уловленными в циклоне, обычно подается в топку через так называемые «сбросные» горелки); или же для транспорта пыли к горелкам используется тот же самый сушильный агент, отсасываемый из циклона мельничным вентилятором (в этом случае не требуется оборудовать котел сбросными горелками).
Рис. 3.5. Индивидуальная система пылеприготовления с прямым вдуванием для молотковых мельниц: 1 – бункер сырого угля; 2 – отсекающий шибер; 3 – питатель угля; 4 – мигалка; 5 – течка сырого угля; 6 – мельница; 7 – сепаратор; 8 – распределитель пыли; 9 – взрывной клапан; 10 – короб вторичного воздуха; 11 – дутьевой вентилятор; 12 – воздухоподогреватель; 13 – пылепровод; 14 – горелка; 15 – котел; 16 – трубопровод аварийной присадки воздуха; 17 – шибер с быстрозакрывающимся устройством; 18 – клапан присадки холодного воздуха; 19 – воздухопровод горячего воздуха; 20 – трубопровод холодного воздуха для уплотнения вала мельницы; 21 – устройство для измерения расхода сушильного агента
В последние годы некоторое распространение в России получил 3-й вариант: подача пыли к горелкам с высокой концентрацией — ППВК. Этот метод заключается в том, что пылесистема оборудуется высоконапорными воздуходувками для транспорта пыли по трубопроводам малого диаметра (обычно – 76 мм) при концентрации угольных частиц 30–40 кг на кг воздуха (при традиционном методе концентрация твердых частиц близка 0,5 кг/кг, а диаметр пылепровода, в зависимости от мощности горелки, составляет 300–800 м).
Рис. 3.6. Индивидуальная система пылеприготовления с ШБМ и с промежуточным бункером: 1 – бункер сырого угля; 2 – отсекающий шибер; 3 – автоматические весы; 4 – весовой бункер; 5 – питатель угля; 6 – течка сырого угля; 7 – устройство для нисходящей сушки; 8 – мельница; 9 – клапан присадки холодного воздуха; 10 – устройство для измерения расхода сушильного агента; 11 – мигалка; 12 – сепаратор; 13 – течка возврата крупной пыли; 14 – циклон; 15 – перекидной
шибер; 16 – реверсивный шнек; 17 – бункер пыли; 18 – питатель пыли; 19 – трубопровод рециркуляции; 20 – мельничный вентилятор; 21 – короб первичного воздуха; 22 – смеситель; 23 – горелка; 24 – взрывной клапан; 25 – трубопровод сушильного агента; 26 – атмосферный клапан; 27 – воздухопровод; 28 – газопровод; 29 – смесительная камера; 30 – короб вторичного воздуха; 31 – дутьевой вентилятор; 32 – воздухоподогреватель; 33 – заглушка; 34 – сбросная горелка; 35 – котелПринципиальная разница между схемами пылеприготовления с прямым вдуванием и промежуточным бункером заключается в том, что первая предполагает жесткую связь между мельницами и котлом: изменение нагрузки котла требует обязательного изменения режима работы мельничного оборудования.
Для второго варианта характерна большая гибкость: наличие промежуточного бункера позволяет эксплуатировать пылесистему в оптимальном режиме независимо от колебаний нагрузки котельной установки. Более того, эта схема допускает даже кратковременный останов мельницы: котел несколько часов может работать на топливе из пылевого бункера. А при наличии связи между соседними бункерами котел может длительно работать, получая угольную пыль от пылесистемы соседнего котла.
К недостаткам систем пылеприготовления с промежуточным бункером относятся, во-первых, увеличение затрат на оборудование и места для его размещения, а во-вторых, повышенные затраты на собственные нужды в связи с наличием не только мельницы, но и мельничного вентилятора.
С учетом этого в последнее время пылесистемы с промежуточным бункером устанавливают только при проектировании энергоблоков на малореакционных углях или использовании топок с жидким шлакоудалением, когда для надежного воспламенения и повышения температуры в зоне активного горения целесообразно подавать топливо к горелкам горячим воздухом.
При сжигании каменных углей с высоким выходом летучих, а также различных марок бурого угля и торфа обычно применяют системы пылеприготовления с прямым вдуванием.
Собственно размол топлива в сочетании с его сушкой осуществляется в мельницах. На тепловых электростанциях получили распространение тихоходные шаровые-барабанные (ШБМ), среднеходные валковые и шаровые (МВС и МШС), а также быстроходные молотковые (ММ) мельницы и мельницы-вентиляторы (М-В).
Шаровая барабанная мельница представляет собой барабан, выложенный внутри волнистыми броневыми плитами. Почти треть его объема заполнена стальными шарами диаметром 25–60 мм. Размол угля осуществляется по принципу удара и истирания. При вращении барабана (16–23 об/мин) шары поднимаются на определенную высоту и падают, разбивая кусочки угля. Перекатывание шаров дополнительно превращает дробленку в пыль за счет истирания (рис. 3.7).
Рис. 3.7. Шаровая барабанная мельница: 1 – входной патрубок; 2 – опорный подшипник; 3 – барабан мельницы с тепло– и звукоизоляцией; 4 – выходной патрубок; 5 – большая шестерня; 6 – редуктор; 7 – электродвигатель
Сырое топливо вместе с горячим воздухом подается в барабан через входной патрубок, а готовая пыль удаляется вентилирующим агентом через выходной патрубок.
Достоинством ШБМ является их универсальность: они пригодны для размола как мягких углей с высоким выходом летучих, так и твердых топлив, типа АШ. В случае попадания в ШБМ посторонних (в том числе – металлических) предметов не требуется аварийный останов мельницы.
К недостаткам ШБМ относятся, прежде всего, повышенный расход электроэнергии на размол: энергия тратится на вращение барабана даже при отсутствии топлива. Второй недостаток – износ шаров (при размоле АШ, например, истирается 400 г металла на 1 т полученной угольной пыли). Кроме того, пылесистема с ШБМ – это, как правило, пылесистема с промбункером, то есть громоздкая и сложная система, требующая место для сепараторов, циклонов, пылевых бункеров и пылепитателей. Поэтому такие мельницы в настоящее время применяются только в случае использования малореакционных твердых углей с Кло <= 1,1, требующих для эффективного сжигания весьма тонкий размол (R90 <= 10 %).