Ли Смолин. Возрожденное время: От кризиса в физике к будущему вселенной
Шрифт:
Теория, в которой законы эволюционируют, называется космологический естественный отбор, который я разработал в конце 1980-х и опубликовал в 1992 [1]. В этой статье я сделал два предсказания, которые могли бы быть фальсифицированы в течение двух десятилетий с того момента, но не были. Конечно, это не доказывает, что теория корректна, но, по меньшей мере, я показал, что теория эволюционирующих законов может объяснить и предсказать реальные черты нашего мира.
Для примера вневременной теории я возьму версию сценария множественных вселенных, названную вечная инфляция, предложенную в 1980-х Александром
Виленкиным и Андреем Линде и с тех пор широко изученную [2]. Вечная инфляция бывает в разных формах, отражающих факт, что некоторые из ее гипотез регулируются. Чтобы рассмотреть
Одна из причин, по которой космологические сценарии с эволюционирующими законами преуспевают в выдаче реальных предсказаний, состоит в том, что они не полагаются на антропный принцип– который устанавливает, что мы можем жить только во вселенной, чьи законы и начальные условия создали благоприятный для жизни космос, - чтобы соединить мультивселенную со вселенной, которую мы наблюдаем. Одной из задач этой главы является опровержение утверждения, что антропный принцип может играть роль в создании предсказательной теории.
Космологический естественный отбор был темой моей первой книги, Жизнь Космоса, так что я опишу его только в тех деталях, которые достаточны для прояснения вопроса, почему эволюция законов во времени приводит к их фальсифицируемому объяснению [3].
Основной гипотезой космологического естественного отбора является то, что вселенные воспроизводятся через создание новых вселенных внутри черных дыр. Наша вселенная, таким образом, суть отпрыск другой вселенной, родившийся в одной из черных дыр последней, и каждая черная дыра в нашей вселенной есть семя новой вселенной. В рамках этого сценария мы можем применить принципы естественного отбора. Механизм естественного отбора, который я использую, базируется на методах популяционной биологии, служащих для объяснения, как могут быть выбраны некоторые управляющие системой параметры, что делает ее более сложной, чем она могла бы быть в ином случае. Применение естественного отбора для объяснения сложности системы требует следующего:
– Пространство параметров, которые меняются среди популяции. В биологии этими параметрами являются гены. В физике это константы Стандартной Модели, включая массы различных элементарных частиц и интенсивности основных сил. Эти
к оглавлению параметры формируют разновидность конфигурационного пространства для законов природы - пространство, названное ландшафтом теорий (термин заимствован из популяционной биологии, где пространство генов названо ландшафтом приспособленности). - Механизм воспроизводства. Я перенял старую идею, предложенную мне моим наставником Брюсом ДеВиттом после защиты докторской, которая заключается в том, что черные дыры приводят к рождению новых вселенных. Это является следствием гипотезы, что квантовая гравитация устраняет сингулярности, где время начинается и заканчивается - гипотезы, для которой имеются хорошие теоретические основания. Наша вселенная имеет огромное количество черных дыр, по меньшей мере, миллиард миллиардов, что означает очень большую популяцию потомков. Мы можем предположить, что наша вселенная сама является частью линии поколений, простирающейся далеко в прошлое. - Изменчивость. Естественный отбор работает частично, поскольку гены хаотически мутируют или рекомбинируют во время воспроизводства, так что геномы потомков отличаются от генома любого из родителей. Аналогично мы можем предположить, что всякий раз, когда рождается новая вселенная, имеется небольшое хаотическое изменение в параметрах законов. Так что мы можем отметить на ландшафте точку, соответствующую величинам параметров этой вселенной. Результатом является гигантская и растущая коллекция точек на ландшафте, представляющих вариации параметров законов по мультивселенной. - Различия в приспособленности. В популяционной биологии приспособленность индивидуума есть мера его репродуктивной успешности - то есть, насколько много он производит потомков, которые процветают достаточно долго, чтобы иметь своих собственных детей. Приспособленность вселенной тогда есть мера того, насколько много она рождает черных дыр. Число оказывается чувствительно зависящим от параметров. Не так легко сделать черную дыру; по этой причине многие параметры приводят к вселенным, которые вообще не имеют черных дыр. Немного параметров приводят к вселенным, которые имеют очень много черных дыр.
Эти вселенные занимают очень малую область в пространстве параметров. Мы будем предполагать, что эти крайне плодородные области в пространстве параметров представляют собой острова, окруженные намного менее плодородными областями. - Типичность. Мы также предположим, что наша собственная вселенная является типичнымк оглавлению представителем популяции вселенных и что эта популяция возникла после многих поколений. Тогда мы можем предсказать, что любые свойства, разделяемые большинством вселенных, являются свойствами нашей собственной вселенной [4].
Сила естественного отбора как методологии в том, что из этих минимальных допущений могут быть выведены строгие заключения. Основное следствие в том, что после многих поколений большинство вселенных будут иметь параметры внутри областей с высшим плодородием. Следовательно, если мы изменим параметры типичной вселенной, результатом, вероятнее всего, будет вселенная, которая формирует намного меньше черных дыр. Поскольку наша вселенная типична, это должно быть верно и для нашей вселенной.
Это предсказание, которое может быть косвенно проверено. Мы уже знаем, что многие способы изменения параметров Стандартной Модели приводят к вселенным без долгоживущих звезд, необходимых для производства углерода и кислорода. И, что замечательно, углерод и кислород необходимы для охлаждения газовых облаков, в которых формируются массивные звезды, которые порождают черные дыры. Другие пути изменения параметров ослабляют сверхновые, которые не только приводят к черным дырам, но и выбрасывают энергию в межзвездную среду - энергию, которая управляет коллапсом облаков, а значит, формирует новые массивные звезды. Мы уже знаем, по меньшей мере, восемь способов слегка изменить параметры Стандартной Модели, что могло бы привести к вселенным с меньшим количеством черных дыр [5].
Итак, космологический естественный отбор предлагает настоящее объяснение тому, почему параметры Стандартной Модели появились тонко настроенными для вселенной, которая заполнена долгоживущими звездами, которые со временем обогатили вселенную углеродом, кислородом и другими элементами, необходимыми для химической сложности. Этой сложностью наша вселенная не обделена. Параметры, чьи величины в большей или меньшей степени объясняются так, включают массы фотона, нейтрона, электрона и электронного нейтрино, а также величины четырех сил. Имеется бонус: В то время как объяснение включает максимизацию производства черных дыр, следствием является появление вселенной, благоприятной для жизни.
Более того, гипотеза космологического естественного отбора делает некоторые реальные предсказания, которые фальсифицируются выполнимыми в настоящее время наблюдениями. Одно из них, что самые массивные нейтронные звезды не могут быть
тяжелее определенного лимита. Идея в том, что сверхновая оставляет после взорвавшейся звезды центральную область. Это ядро коллапсирует или в нейтронную звезду, или в черную дыру. Что именно из них возникает, зависит от того, насколько велика масса ядра; нейтронная звезда может существовать, только если ее масса ниже определенной критической величины. Если космологический естественный отбор верен, эта критическая величина должна быть настроена настолько малой, насколько это возможно, поскольку, чем она меньше, тем больше будет сделано черных дыр.
Оказывается, что есть несколько возможностей, из чего могут быть сделаны нейтронные звезды. Одна возможность это просто нейтроны, в этом случае критическая масса могла бы быть скорее высокой, между 2,5 и 2,9 масс Солнца. Но другая возможность заключается в том, что центр нейтронной звезды содержит экзотические частицы, называемые каоны. Это должно понизить критическую массу по сравнению с чисто нейтронной моделью. Однако размеры этого понижения зависят от деталей теоретического моделирования; различные модели дают критическую массу где-то между 1,6 и 2 солнечных масс.
Если космологический естественный отбор верен, мы могли бы ожидать, что природа воспользовалась возможностью создать каоны в центре нейтронных звезд для снижения критической массы. Оказывается, что это могло бы быть сделано путем тонкой настройки массы каона до достаточно легкой; это может быть сделано, без влияния на темп формирования звезды, путем тонкой настройки массы странного кварка. Когда космологический естественный отбор был впервые предложен, самая тяжелая из известных нейтронных звезд имела массу менее 1,5 от массы Солнца. Но недавно была обнаружена нейтронная звезда, имеющая массу немногим менее двух масс Солнца. Это могло бы опровергнуть космологический естественный отбор, если масса каонно-нейтронных звезд находится на нижнем конце теоретического диапазона, но теория еще может соответствовать действительности, если правильный ответ находится на верхнем конце теоретической оценки, которая также равна двум массам Солнца.