Чтение онлайн

ЖАНРЫ

Машина мышления. Заставь себя думать
Шрифт:

То есть наш мозг, ориентируясь на обстановочную афферентацию (в одном случае — дача, в другом случае — ваш рабочий офис), считает какие-то пусковые стимулы более релевантными для неё, а какие-то — менее.

Ведь точно так же, если ваш коллега по работе (пусковой стимул) вдруг появится в обстановочной афферентации вашего дачного посёлка, это опять-таки приведёт ваш мозг в некоторое замешательство, потому что подобное событие трудно, а то и невозможно было предсказать.

Вот это «трудно было предсказать, что» и есть результат предиктивного кодирования.

Мозг

постоянно рассчитывает вероятности будущих событий с учётом актуальной ситуации (обстановочной афферентации) и предсказывает будущее — то есть предиктивно его кодирует («опережающе отражает»).

Если прогноз, сделанный нашим мозгом, оправдывается, то ему и нет нужды особенно напрягаться — он работает на автоматизмах, особенно даже не вовлекаясь в процесс.

О чём тут задумываться, если «всё как обычно», «типично», «рутинно»?

Однако же, если вы сталкиваетесь с пусковым стимулом, который нетипичен для данной обстановочной афферентации, срабатывает сигнал тревоги, и вы судорожно пытаетесь понять, как вам действовать в этой непривычной для вас ситуации. И тут мозг включается на все сто.

То есть если наш прогноз не оправдывается, это повергает нас в стресс, что включает целый комплекс адаптационных механизмов, о чём, собственно, и говорил Иван Петрович Павлов, учитель Петра Кузьмича Анохина, рассказывая о феномене динамической стереотипии.

ВЕРОЯТНАЯ ВЕРОЯТНОСТЬ

Томас Байес, пресвитерианский священник и сын пресвитерианского священника, кроме богословия, освоил в Эдинбургском университете ещё и логику, что стало, судя по всему, закладным камнем всем нам известной теперь теории вероятности.

В 1764 году, уже после смерти Байеса, в «Трудах Лондонского королевского общества» была опубликована его работа «Эссе о решении проблем в теории случайных событий», которая рассказывала о «теореме Байеса»20.

Работу, кстати сказать, обнаружил в архиве Байеса его друг — Ричард Прайс. Обнаружил — и вписал тем самым байесовское имя в историю (впрочем, как и своё собственное).

Теорема Байеса в этом эссе определяет вероятность наступления события в условиях, когда на основе наблюдений известна лишь некоторая информация о событиях.

То есть мы знаем, что было такое-то количество наблюдений (замеров) и такое-то количество попаданий (событий), и из этого можем высчитать, какова вероятность того, что при следующем наблюдении искомое событие будет иметь место.

Энное количество раз я закрывал холодильник в своей кухне, и, видимо, такое же количество раз за этим следовал тихий хлопок. Количество замеров, произведённых моим мозгом, и соответствующих совпадений делает этот хлопок обязательным элементом ситуации, а его вероятность — практически стопроцентной.

Если всё максимально упростить, то теорема Байеса утверждает: вероятность какого-либо события — это то же самое, что и частота наступления этого события, где частота — это количество измерений.

Таким образом, если разделить число известных случаев события на общее количество измерений, мы получим вероятность события.

Феномен предиктивного кодирования —

это и есть механизм предсказания вероятности будущих событий, который с математической точки зрения описывается как раз вариационными байесовскими методами.

Последние учитывают и поступающие данные, и скрытые переменные с различными потенциальными вариантами отношений между ними. То есть это уже многоуровневая байесовская модель, которая позволяет аппроксимировать расчёт вероятностей до конкретных предсказаний.

Над этой темой, если вы захотите разбираться в ней более детально, работают Карл Фристон и Саша Ондобака из Университетского колледжа Лондона, Анил Сет из Университета Сассекса, а также канадка Лиза Фельдман Барретт из Северо-Восточного университета в Бостоне и Кайл Симмонс из Университета Оклахомы.

А упоминаю я обо всём этом только потому, что возможность подобной математизации имеет чрезвычайно большое методологическое значение…

Фактически мы видим, что в основе психической функции предиктивного кодирования лежит не «мысль», как мы привыкли её понимать, а алгоритм.

Так что нет ничего удивительного в том, что предиктивное кодирование определяется сейчас уже как универсальный механизм адаптации множества различных систем к средам, в которых они могут оказаться.

Клетка биологического организма с помощью предиктивного кодирования предсказывает поступление веществ из межклеточной среды и заранее готовится к этому, продуцируя необходимые для такого случае белки.

Нейроны зрительной коры прогнозируют то, что внешняя среда покажет им в ближайшее мгновение. На высоком когнитивном уровне мы точно так же постоянно прогнозируем то, что ещё не произошло, но с большой вероятностью может случиться.

Или вот посмотрим, как этот механизм работает на уровне конкретного нейрона.

Допустим, у нас есть нейрон В, который возбуждается от нейрона А и передаёт соответствующий сигнал нейрону С.

Допустим, что нейрон В привык, что нейрон А возбуждает его сотней синапсов. Соответственно, активация ста синапсов на нейроне А создаёт потенциал действия, который передаётся по цепи нейрону С.

В результате, согласно принципу предиктивного кодирования, нейрон С предсказывает, что получит привычный для него потенциал действия от нейрона А, и живёт с этим счастливым ощущением предопределённости.

Но в один прекрасный момент нейрон А передаёт нейрону В слабый сигнал, в результате чего достаточного потенциала действия не возникает и нейрон С вообще не получает никакого сигнала.

В другой прекрасный момент нейрон А перевозбуждается и перевозбуждает нейрон В, а С получает сигнал, который совершенно не ожидал получить.

Итак, вот она, реальная жизнь, полная неопределённости и вероятностей.

Нейрон С, желая справиться с возможной ошибкой, начинает готовиться к неопределённости: он экспрессирует больше рецепторов для захвата нейромедиаторов или, наоборот, уменьшает их количество, изменяет число ионных каналов на своей мембране (об этом мы поговорим чуть позже), отращивает или, наоборот, элиминирует шипики, налаживает контакты с другими нейронами, чтобы перераспределять полученный потенциал, и т. д., и т. п.

Поделиться с друзьями: