Чтение онлайн

ЖАНРЫ

Математические головоломки и развлечения

Гарднер Мартин

Шрифт:

Этот кусочек мы будем называть подвеской. Поскольку нам понадобится различать стороны подвески, их лучше всего раскрасить в разные цвета или одну из сторон пометить буквой X. У прямого края подвески проделайте три отверстия и, пропустив в каждое из них по отрезку тяжелого, но гибкого шнура длиной около 60 см, завяжите шнурки узлом (великолепно подходит для этих целей крученый шнур, из которого делают пояса). Другой конец каждого шнура привяжите к какому-нибудь неподвижному предмету, например к спинке стула.

Подвеска, как нетрудно видеть, может совершать полные обороты шестью различными способами: ее можно поворачивать на 360° вокруг вертикальной оси; поворачивать вокруг прямого края на себя или от себя, продевая ее между шнурами А и В; поворачивать также вокруг прямого края на себя или от себя, но продевать при этом между шнурами В и С. Во всех шести случаях

получаются разные косы. Коса, которая «заплетается» при пропускании подвески между шнурами В и С, показана на рис. 184,б. Возникает вопрос, можно ли расплести эту косу, продевая подвеску между шнурами подобно ткацкому челноку и все время держа ее в плоскости рисунка— так, чтобы сторона, помеченная буквой X, была обращена к зрителю, а острый «носик» смотрел на вас (предполагается, что, читая, вы держите книгу на столе перед собой)? Оказывается, что реворачивание разрешается производить в любом направлении как на себя, так и от себя), всегда можно расплести, действуя подвеской как ткацким челноком, без новых поворотов ее; если же коса получилась оттого, что подвеска совершила нечетное число полных оборотов, то расплести ее без дополнительных оборотов подвески никогда не удастся.

Хейн впервые услышал об этой теореме в начале тридцатых годов на одном семинаре в Институте теоретической физики Нильса Бора, когда П. Эренфест обсуждал ее в связи с какой-то проблемой квантовой теории. С помощью ножниц, принадлежавших супруге Бора, и нескольких веревочек, привязанных к спинке стула, Хейну и другим участникам семинара удалось найти доказательство этой теоремы. Позднее Хейну пришло в голову, что вращающееся тело и окружающая его вселенная входят в задачу симметрично, поэтому симметричную модель можно было бы построить очень просто, привязав по подвеске к каждому концу шнура. Имея такую симметричную модель, можно вдвоем играть в топологическую игру. Каждый участник берет свою подвеску; между подвесками протянуты три шнура. Один из игроков заплетает косу, а второй, расплетая ее, засекает необходимое для этого время, затем игроки меняются ролями. Тот, кто расплетет косу быстрее, считается победителем.

Теорема о четном и нечетном числе поворотов подвески, очевидно, применима и к этой игре. Начинающим рекомендуется ограничиться косами, при заплетании которых подвеска совершает два полных оборота, и лишь потом, попрактиковавшись и набив руку, переходить к более сложным косам четного порядка. Хейн назвал свою игру «танглоид». В течение ряда лет она была очень популярна в Европе.

Почему между четным и нечетным числом полных оборотов подвески существует такое различие? На этот весьма непростой вопрос трудно ответить, не вдаваясь более глубоко в теорию групп.

Некоторое представление о причинах такого различия можно получить, заметив, что два поворота в противоположных направлениях—это то же самое, что ни одного поворота. Если два оборота почти противоположны и отличаются только тем, что при совершении их подвеска была пропущена между различными парами шнуров, то косу можно расплести, продев подвеску между шнурами так, чтобы уничтожить это различие. Пользуясь теорией кос, можно доказать, что при нечетном числе оборотов подвески пряди распутать нельзя.

Заплетать косы, поворачивая подвеску наугад четное число раз, а затем быстро расплетать их — занятие увлекательное. На рис. 185 показаны три простые косы, каждая из которых заплетена лишь двумя полными оборотами подвески.

Рис. 185 Три задачи на расплетание кос.

Косу в случае а получили, дважды пропустив подвеску между шнурами В и С (оба раза от себя); в случае б — продев подвеску между шнурами В и С от себя, а затем между шнурами А и В в обратном направлении. Коса в случае в заплелась от того, что подвеску два раза повернули слева направо вокруг вертикальной оси. Читателю предоставляется самому найти лучший способ расплетания каждой из этих кос.

* * *

При изготовлении «реквизита» для танглоида подвеску лучше вырезать не из картона, а из деревянной дощечки или пластика.

Вместо трех отдельных шнуров Хейн рекомендует брать один длинный шнур. Шнур нужно пропустить через первое отверстие первой подвески и привязать к ней, чтобы он не выскальзывал. Затем его нужно продеть сквозь первое отверстие второй подвески и, пропустив в обратном направлении через среднее отверстие все той же второй подвески, продеть через среднее

отверстие первой подвески, после чего продеть в обратном направлении через третье отверстие первой подвески и, продев сквозь третье отверстие второй подвески, завязать свободный конец шнура узлом. Шнур свободно может проскальзывать в отверстия, что облегчает все манипуляции по сравнению с конструкцией, в которой используются три отдельных шнура. Один читатель сообщил нам, что он соединил свои подвески тремя отрезками гибкого шнура и обнаружил, что это также облегчает все манипуляции. Игру можно усложнять, вводя все новые и новые шнуры, но и при трех шнурах она весьма непроста.

Из рис. 182 видно, что описывающая танглоид группа неабелева (то есть некоммутативна). Таблицы для абелевых групп симметричны относительно диагонали, идущей из левого верхнего в правый нижний угол. Иначе говоря, треугольные части таблицы, лежащие по обе стороны этой диагонали, служат зеркальным отражением одна другой.

Если в игру с блужданием по сети линий «основы» и «утка» играют не втроем, а вчетвером, то ее группой будет группа перестановок четырех символов. Эта группа не совпадает с группой, описывающей повороты и отражения квадрата, потому что некоторые перестановки вершин квадрата нельзя получить с помощью одних лишь поворотов и отражений. Преобразования квадрата образуют «подгруппу» группы перестановок четырех символов. Все конечные группы (то есть группы с конечным числом элементов) либо являются группами перестановок, либо входят как подгруппы в какую-нибудь из групп перестановок.

В статье Артина по теории кос [58] дается метод приведения любой косы к ее «нормальной» форме. Первая прядь «нормальной» косы полностью выпрямлена, вторая может охватывать первую прядь петлями, третьей пряди разрешается описывать петли вокруг первой и второй прядей и т. д. «Хотя доказано, что всякую косу можно привести к эквивалентной ей нормальной форме, — пишет Артин, — автор на собственном опыте убедился, что любая попытка осуществить предсказанное на живой персоне приводит лишь к бурным протестам с ее стороны и оскорбительным выпадам против математики».

58

Artin E. Theory of Braids:.Annals of Mathematics, 48, № 1, January 1947, pp. 101–126.

Ответы

Три задачи «на расплетание» кос решаются следующим образом:

1. Пропустите подвеску под шнуром С справа налево, а затем под шнурами А и В слева направо.

2. Пропустите подвеску под серединой шнура В слева направо.

3. Пропустите подвеску под всеми шнурами слева направо.

Глава 37. ВОСЕМЬ ЗАДАЧ

1. Как разрезать тупоугольный треугольник на остроугольные? Пусть дан тупоугольный треугольник. Можно ли разрезать его на меньшие треугольники так, чтобы все они были остроугольными? (Остроугольным мы называем треугольник, у которого все три угла острые. Прямой угол, разумеется, не является ни тупым, ни острым.) Если этого сделать нельзя, докажите почему. Если можно, то возникает новый вопрос: каково наименьшее число остроугольных треугольников, на которые его можно разрезать?

На рис. 186 показана типичная безуспешная попытка решить задачу. Треугольник разбит на три остроугольных треугольника, но четвертый треугольник оказывается тупоугольным, поэтому три предыдущих разрезания ничего не дают.

Рис. 186 Можно ли разрезать этот треугольник на остроугольные треугольники меньших размеров?

Эта задача представляет большой интерес, потому что вводит в заблуждение и заставляет делать неверные заключения даже очень сильных математиков. Удовольствие, которое я получил, размышляя над ней, побудило меня поставить другой вопрос. Чему равно наименьшее число остроугольных треугольников, на которые можно разрезать квадрат? В течение нескольких дней я был убежден, что минимальное число равно девяти, но потом вдруг увидел, что его можно понизить до восьми. Интересно, сумеете ли вы найти решение с восемью треугольниками. Может быть, вам даже удастся улучшить мой результат и разрезать квадрат на еще меньшее число остроугольных треугольников. Я не смог доказать, что восемь — это минимум, хотя сильно подозреваю, что это так.

Поделиться с друзьями: