Математика от А до Я: Справочное пособие (издание третье с дополнениями)
Шрифт:
Отмечается [137], что если данные по исследованию динамической составляющей подъема факела у разных авторов по характеру влияния на подъем параметров сносящего потока и движущейся в ней струи совпадает, то при изучении тепловой составляющей такое единообразие отсутствует. Оно проявляется в различиях в значениях показателей в формуле для hr, которое приводит к большим отличиям в вычисленных значениях теплового всплытия.
Такое различие вычисляемых hr объясняется
различными теоретическими предпосылками при определении этой характеристики, трудностями исследования теплового подъема на моделях в лабораторных условиях, отсутствием опытных данных по влиянию различных факторов на подъем выброса.
Что касается ограничений для применения аналитических формул,
Рассмотрим теперь некоторые литературные данные по высотам подъемов кратковременных выбросов. По зарубежным литературным источникам, обобщенным в работе [151] для наземных, приземных и воздушных ядерных взрывов высота центра облака после стабилизации может быть найдена по формуле:
hц=1070 ·q0’2
где q — мощность ядерного заряда;
[q]=T; [h]=M
Модификация этой формулы относительно верхней he и нижней hH границ взрывного облака дает следующие значения:
где a = (3 + 0,131gq)– 1; e = (2,6 +0,4lgq)– 1.
Независимая обработка данных по высотам 60 ядерных взрывов привела к появлению формулы, справедливой в диапазоне q от долей тонны до 105т (с надежной статистикой лишь в диапазоне 1-100кт), определяющую высоту подъема hц в виде [151]:
hц =1600·q0,21
Для наземных подрывов взрывчатки справедливо соотношение
hц = 284·q0’22 ·В– 1/3– 0,36u · В– 1, (3.68)
где u — средняя скорость ветра в слое 0·hц.
В случае изотермий, когда
hц = 1400 q0,22 — 52 (3.69)
Эта формула неприменима при
При взрывах химических ВВ в серийных взрывах программы «Хардхет» в умеренноустойчивых условиях высота подъема облака оценивается в следующем виде [151]: hц 700 qn, (3.70)
где n — принимает значения от 0,2 до 0,25.
Для более полного описания геометрии атмосферного источника при ядерных взрывах целесообразно привести формулы геометрических характеристик подобных источников. Для диаметра облака Добл, вертикального его размера Н и диаметра «ножки» облака Дн можно пользоваться следующими оценками:
Добл. = 1600 q0’117
Н = 1430 V0’246
Дн= 1420 V0’134
Эти же значения параметров, очевидно, могут быть применены для инженерных оценок выбросов при взрывах химических ВВ и авариях взрывного характера на АЭС и других энергоемких объектов. В любом случае после взрыва формируется универсальный по форме атмосферный
источник, отличающийся лишь характером поступления примесей и их составом.В разделе книги, посвященном рассеиванию примесей из вторичных источников, приводится пример, как используя стандартные модели рассеяния, можно получить суммарное поле приземных концентраций в виде суперпозиции концентраций двух источников: облака и «ножки».
Отметим, что приведенные в этом разделе формулы пригодны только для весьма грубых инженерных оценок в соответствующих диапазонах параметров атмосферы и источника загрязнений.
Наилучшие и наиболее корректные результаты в процедуре получения высот подъема выбросов в атмосфере дает, на наш взгляд, решение полной системы дифференциальных уравнений движения выброса при задании пульсационных характеристик атмосферы.
При этом для прерывания расчетного процесса необходимо использовать критерий потери выбросом динамической индивидуальности на фоне пульсационного движения окружающего воздуха.
3.9. Выбросы в стратифицированной атмосфере
Антропогенные выбросы, за исключением терминов ядерных взрывов, обладают сравнительно небольшой энергией. Их подъем и диффузия происходят в нижней части тропосферы — пограничном слое Земли.
Полуторакилометровый атмосферный пограничный слой имеет в вертикальном направлении слоистую структуру. Причиной этого служат конвективные движения больших масс воздуха, связанные с неравномерным нагревом и теплопередачей поверхности земли. Практически беспрерывно меняются в погранслое по координате Z такие характеристики атмосферного воздуха как его влажность, температура, скорость и плотность. В горизонтальном направлении эти параметры меняются в сотни раз медленнее. Поэтому в непосредственной окрестности места образования выброса их изменением по х и по у можно пренебречь.
Внутри пограничного слоя атмосферы характерным является падение температуры с высотой (в среднем на 6,5° на 1 км). Однако в отдельные временные промежутки, от нескольких минут до многих часов наблюдаются колебания осредненных значений температуры и плотности атмосферного воздуха по высоте (стратификация). В общем случае газообразный выброс, возникающий на некоторой высоте Zобр, имеет начальную температуру выше температуры окружающей среды, при подъеме в атмосфере будет последовательно проходить отдельные слои (приземный, пограничный, тропосферный и т. д.), пока не потеряет свой динамической индивидуальности. Дальнейшее распространение его вещества будет происходить под действием диффузии в сносящем ветром потоке и подъема при наличии перегрева его вещества до уровня стабилизации. Рассмотрим эволюцию газообразных выбросов в стратифицированной атмосфере [133,152].
Различимость кратковременного выброса в атмосферном воздухе
При отсутствии инверсий температуры в пограничном слое земли выброс нагретого газа всегда теплее окружающего воздуха. Поэтому он должен был бы подниматься не только до верхней границы погранслоя, а значительно выше — теоретически до бесконечности.
Однако из повседневной практики известно, что подъем газообразных выбросов, связанных с деятельностью человека, весьма незначителен. Объясняется это воздействием турбулентных пульсаций атмосферного воздуха, «растаскивающих» выброс на отдельные фрагменты и таким образом разрушающим его. Вещество выброса перераспределяется отдельными вихрями атмосферного воздуха и распространяется по законам атмосферной диффузии.
Таким образом, критерием существования газообразного выброса как целого в атмосфере является условие его динамической различимости на уровне турбулентности атмосферы. Так как турбулентность атмосферы характеризуется энергией ее пульсационного движения Е, то критерий существования выброса может быть записан так:
где р, р — плотность газа выброса и окружающего воздуха;
V,Ve — скорость центра массы кратковременного выброса (скорость газа струи в случае струйного выброса) и проекция скорости сносящего ветрового потока на направление движения выброса.