Материалы для ювелирных изделий
Шрифт:
Углерод. Углерод не реагирует с серебром и не растворяется в нем. Попадая в расплав, частицы углерода остаются в нем в виде инородных включений.
Ниже представлены марки некоторых припоев на основе серебра (табл. 10.5).
Таблица 10.5
Состав и свойства сплавов, содержащих серебро
10.5. Влияние газов на свойства серебряных сплавов
Серебро не очень активно взаимодействует с различными газами, за исключением кислорода. Так, азот не растворяется ни в жидком, ни в
Присутствие в сплаве недрагоценных окисляющихся металлов снижает интенсивность процесса выделения кислорода вследствие образования окислов легирующих металлов.
Важнейший для серебра присадочный металл – медь образует с кислородом закись меди Сu2О, который затем окисляется до СuО. При температуре 776 °C сплавы серебро – медь образуют с закисью меди тройную эвтектику Ag – Си – Сu2О состава: 66,5 % Ag, 32,8 % Си, 0,7 % Сu2О, близкую к бинарной эвтектике Ag – Си.
Образование окислов меди является причиной многих дефектов, возникающих при обработке сплавов серебра.
При плавке в кислородосодержащей среде в сплавах серебро – медь образуется закись меди Сu2О, которая выделяется по границам зерен. Если содержание кислорода в сплаве выше 0,4 % от веса металла, то выделение Сu2О происходит не только по границам зерен, но и внутри зерен. Присутствие 1 % закиси меди делает сплав твердым, хрупким и ломким.
Расплавы, содержащие закись меди, обладают большой вязкостью, что препятствует быстрому выделению газов при затвердевании и приводит к появлению газовых пор и раковин в слитке.
При высокотемпературной обработке серебряно-медных сплавов серебро поглощает кислород и проводит его внутрь сплава. При этом наблюдается окисление меди как на поверхности, так и внутри сплава.
У богатых серебром гомогенных твердых растворов отчетливо наблюдается «внутреннее окисление». На поверхности сплава образуется очень тонкий слой окиси меди, через который кислород сравнительно легко проникает внутрь, образуя с входящей в твердый раствор медью частицы закиси меди. При малой длительности нагрева максимум поглощения кислорода наблюдается у сплава с 10 % меди.
При длительных выдержках окисляемость металла достигает наибольшего значения в сплавах с 80 % серебра. В этих сплавах большое содержание меди приводит к образованию толстого внешнего окисного слоя. В то же время диффузия кислорода внутрь слитка приводит к образованию внутреннего окисного слоя, состоящего из закиси меди Сu2О.
С увеличением доли меди уменьшается склонность сплавов к внутреннему окислению, так как мелкозернистая эвтектическая структура препятствует диффузии кислорода в сплав и окисление происходит лишь на поверхности сплава. Аналогичное явление наблюдается у заэвтектических сплавов, в которых проникновению кислорода препятствуют кристаллы р-твердого раствора.
Образующаяся в серебряно-медных
сплавах закись меди Сu2О имеет больший, нежели Ag, удельный объем, вследствие чего в сплаве возникают внутренние напряжения, приводящие к повышению твердости и образованию трещин даже при малых степенях пластической деформации. Возникновение трещин приводит к еще более глубокому окислению при промежуточных отжигах, что делает невозможным получение из таких заготовок тонких полос или проволоки. Закись меди, кроме того, вредна еще и тем, что имеет склонность к образованию крупных фракций при отжиге, которые скапливаются в виде пластин или полос под поверхностным слоем, что сильно ухудшает обрабатываемость сплавов.При обработке ювелирных сплавов, содержащих более 80 % серебра, внешний окисленный слой удаляют путем травления в горячем растворе серной кислоты. После нескольких отжигов и травлений на поверхности сплава образуется обогащенный серебром слой, который почти не окисляется и хорошо проводит кислород внутрь сплава, что вызывает глубокое внутреннее окисление. Из-за этого при прокатке, штамповке, волочении сплав расслаивается, шелушится, образуются трещины и надрывы. При последующей шлифовке и полировке обогащенный серебром слой снимается, и на поверхность выступает внутренний оксидный слой в виде серо-голубых пятен.
Выступающие над поверхностью частицы закиси меди при обработке, особенно при шлифовке, полировке, а также при прокатке, вырываются из металла, оставляя штрихообразные следы и углубления («штриховое» серебро).
Сплавы, содержащие закись меди, нельзя отжигать в защитной атмосфере, содержащей водород, так как последний, проникая в металл, при температурах выше 500 °C взаимодействует с закисью меди, восстанавливая ее до металлического состояния с образованием паров воды. Образующиеся при этом газовые поры вспучивания делают сплав ломким и непригодным для дальнейшей обработки.
10.6. Особенности литья серебряных сплавов
В связи с малым количеством сплавов драгоценных металлов, используемых для заливки литейных форм, не представляется возможным вести рафинирование жидкого металла в процессе плавки. В этих условиях необходимы использование чистых исходных компонентов, тщательная подготовка шихты, надежная защита от взаимодействия с атмосферой расплава и рационально выбранные раскислители. Шихтовые материалы тщательно обезжиривают, измельчают до нужных размеров и сушат в шкафу при температуре 120–150 °C. В качестве покровных флюсов используют березовый уголь и плавленую борную кислоту.
Сплавы серебра СрМ 916 и СрМ 875 плавят в графитовых тиглях. На дно тигля засыпают флюс слоем толщиной (5—10)10 3 м и тигель нагревают до температуры 950—1050 °C. Затем под слой расплавленного флюса добавляют серебро (чистое), отходы сплава серебра собственного производства и медь. Шихта расплавляется при тщательном перемешивании расплава. Особенно внимательно следят за расплавлением кусочков меди, которые имеют высокую теплоемкость и плавятся медленнее серебра и отходов сплава. Раскисление металла производят фосфористой медью (0,1 % от массы шихты) при полном его расплавлении. Выдержка жидкого металла после раскисления составляет 2–3 мин, температура заливки – 1000–1100 °C. Непосредственно перед заливкой литейной формы снимают шлак и металл тщательно перемешивают.
11. Золото и его сплавы
Золото – химический элемент, металл. Атомный номер 79, атомный вес 196,97, плотность 19,32 г/см3. Кристаллическая решетка – кубическая гранецентрировапная (ГЦК). Температура плавления 1063 °C, кипения 2970 °C. Твердость по Бринеллю – 18,5.
Золото – металл желтого цвета. Этот благородный металл не взаимодействует с кислотами (кроме смеси соляной и азотной кислот – царской водки), устойчив в атмосфере, воде пресной и морской.