Механика от античности до наших дней
Шрифт:
Если самым общим образом определить собственно научный метод Эйнштейна, то его можно назвать методом инвариантов. Теория относительности была великим торжеством этого метода, и дальнейшее развитие этой теории показало очень отчетливо роль инвариантно-аналитических представлений в ее внутренней структуре. Эйнштейн стремился выразить объективные закономерности природы с помощью величин, инвариантных по отношению к координатным преобразованиям.
Та же тенденция, обращенная в прошлое, лежит в основе оценки, данной Эйнштейном ньютоновой механике.
Простота теории — критерий ее истинности. Что собственно означает слово «простота»? Нетрудно видеть, что у Эйнштейна здесь нет ничего от старых критериев «простоты», с которой действует природа. Речь идет о том, что картина
Изложенная выше оценка классической механики, принадлежащая величайшему физику нашего столетия, данная с позиций современной науки, характеризует роль и значение классической механики как всеобщей физической теории. При этом остается в стороне вопрос о ее практической применимости. Теория, которая не в состоянии охватить вполне удовлетворительным образом все факты, может быть превосходным приближением к действительности в более узких пределах.
В таких пределах она может оставаться основой для понимания и расчета явлений и процессов. Не нужно доказывать, что это в полной мере относится к классической механике: достаточно сослаться на тот факт, что в течение столетий она фактически была основой всей физики. Создание теории относительности не отменило классическую механику, а показало, что ее применимость ограничена условием, чтобы скорости рассматриваемых тел были малы по сравнению со скоростью света. Появление квантовой механики показало, что классическая механика неприменима в микромире при изучении элементарных частиц современной физики. Но классическая механика остается превосходным приближением в огромной области явлений, более того, область ее применения продолжает расширяться.
Продолжается совершенствование аналитического аппарата классической механики, и она, сохраняя свои основы, продолжает обогащаться новыми методами и представлениями. Оказались несостоятельными стремления сделать классическую механику универсальной основой наук о природе, но соответствующее ограничение ее применимости позволило гораздо точнее, чем раньше, определить ту область, где она является надежной основой. И эта область охватывает огромное число технических процессов и явлений природы.
В заключение приведем следующие слова Эйнштейна о классической механике Ньютона: «Ньютон, прости меня! В твое время ты нашел тот единственный путь, который был пределом возможного для человека величайшего ума и творческой силы… Пусть никто не думает, что великое создание Ньютона может быть ниспровергнуто теорией относительности или какой-нибудь другой теорией. Ясные и широкие идеи Ньютона навечно сохранят свое значение фундамента, на котором построены наши современные физические представления»{211}.
IX.
МЕХАНИКА В РОССИИ ВО ВТОРОЙ ПОЛОВИНЕ XIX-НАЧАЛЕ XX ВЕКА
ОБЩИЕ УСЛОВИЯ РАЗВИТИЯ МЕХАНИКИ
Во второй половине XIX — начале XX в. характер теоретической механики несколько изменился. Предыдущее поколение непосредственно примыкало к основателям аналитической механики, особенно к Эйлеру и Лагранжу Новое поколение механиков исходило из результатов, по лученных в первой половине века главным образом Гамильтоном, Остроградским и Якоби. Оно пользовалось гораздо более разветвленным математическим аппаратом, воспринимало новые физические идеи, связанные в первую очередь с законом сохранения энергии, и отражало в своих работах более сложные требования практики.
В целом развитие механики во второй половине XIX в. отличается еще большей дифференциацией и широтой размаха мысли, чем в предыдущий период. Теперь задачи механики все чаще приводят к созданию новых математических
понятий и к проникновению в механику понятий, появившихся в физике; при этом в рамках классической механики возникают некоторые предпосылки релятивистских идей, принадлежащих нашему столетию.В десятилетия, протекшие с середины XIX в. до Великой Октябрьской революции, русские ученые принимали деятельное участие в разработке многих актуальных проблем механики, а в решение некоторых из них внесли основной вклад.
В рассматриваемое время продолжались исследования по теории гидроскопа, восходящие к Эйлеру. Завершающим в известном смысле явилось открытие в 1888 г. С.В. Ковалевской нового случая вращения твердого тела вокруг неподвижной точки, породившее обширную литературу.
Гораздо более широкий размах и глубину получили работы по устойчивости равновесия и движения материальных систем. Английский ученый Э. Раус (1831—1907) в 1877 г. успешно применил к рассмотрению устойчивости движения метод малых колебаний, использованный еще Лагранжем в задаче об устойчивости равновесия. Вскоре результаты Рауса были далеко перекрыты фундаментальными исследованиями А.М. Ляпунова (1892). Несколько ранее с другой точки зрения подошел к задаче об устойчивости движения Н.Е. Жуковский (1882). Постановка задачи об устойчивости движения и строгие методы ее решения, предложенные Ляпуновым, приобрели затем большое значение и в технике. Во Франции в 80-е и 90-е годы той же проблематикой успешно занимался А. Пуанкаре (1854—1912).
Теория малых колебаний находила все более и более важные приложения в технике. В этой связи упомянем пока лишь работы по динамике процессов регулирования И.А. Вышнеградского (1877 г. и позднее) и широко известные труды А.Н. Крылова по качке корабля и другим техническим вопросам.
В самом конце XIX в. И.В. Мещерский положил начало новому направлению в механике переменных масс, все значение которого выявилось уже в наше время — в эпоху развитого ракетостроения, искусственных спутников и космических кораблей. Созданная Мещерским динамика переменной массы лежит в основе современной теории реактивного движения. В это же время, на рубеже XIX—XX вв., замечательный вклад в теорию ракет внес К.Э. Циолковский. Крупные и разнообразные изыскания проведены были по механике жидкостей и газов. Так, было продолжено изучение задачи об обтекании твердого тела (Г. Кирхгоф, Д. Ж. Рэлей, Д.К. Бобылев, Н.Е. Жуковский, В.А. Стеклов и др.) и задачи Дж. Стокса о движении твердого тела, содержащего внутри жидкие массы (Гельмгольц, Нейман, Жуковский, Стеклов); рассмотрено явление гидравлического удара (Жуковский); создана гидродинамическая теория смазки (Петров, Рейнольдс). Решающую роль в дальнейшем развитии аэродинамики сыграла разработка учения о вихревых движениях (Гельмгольц и др.)» широко развитого и использованного рядом русских ученых. Н.Е. Жуковский и С.А. Чаплыгин получили первые фундаментальные результаты в изучении подъемной силы крыла для случая идеальной жидкости, результаты, которые легли в основу авиационной науки. Эти же два ученых явились создателями крупнейшей советской школы аэродинамики и газовой динамики.
Большой цикл работ был посвящен фигурам равновесия вращающейся жидкости и вопросу их устойчивости — проблемам, которые изучали еще Клеро и другие ученые XVIII в. В рассматриваемое время ими занимались А. Пуанкаре и А.М. Ляпунов, причем последний получил наиболее полные и точные результаты. Мы бегло очертили только некоторые основные направления развития механических наук, оставив пока в стороне замечательные работы по теории упругости и ее приложениям, по баллистике и другие, к которым еще вернемся.
Эволюция механики во второй половине XIX в. отражала происшедшие в это время и несколько ранее сдвиги в производстве. Новые исследования в теории упругости и сопротивления материалов были вызваны интенсивным строительством мостов, железных дорог и развитием машиностроения. Конструирование и распространение все более сложных механизмов и машин создало возможность развития новых методов экспериментальной и прикладной механики. Важные механические задачи встали при строительстве военного и торгового флота.