Модели железных дорог
Шрифт:
Подбор резисторов, применяемых в схемах плавной остановки и разгона поезда (см. рис. 99), производят на основании расчёта. Исходными данными являются ток, потребляемый моделью локомотива, и минимальное напряжение, при котором модель продолжает движение. Например, ток, потребляемый моделью, составляет Imax = 0,3 А, а минимальное напряжение Umin = 2,5 В. Тогда, чтобы получить устойчивое движение на последнем участке, падение напряжения при трёх промежуточных участках на каждом из них должно составлять 3 В. Следовательно, сопротивление каждого резистора
RПу = Uт / I = 3 / 0,3 = 10 Ом,
а мощность
P = UI = 3 * 0,3 = 0,9
Резисторы с такими характеристиками лучше всего изготовить самому.
Диоды для схем, изображённых на рис. 97 и 99, подбирают по величине тока, потребляемого моделью локомотива (для данного примера подходят диоды типа Д7А или Д202). Для изготовления резисторов и подбора диодов можно воспользоваться рекомендациями, изложенными при расчёте блоков управления в п. 1 настоящей главы.
Интересное впечатление производит устройство на двухпутных участках макета автоблокировки с трёхзначной сигнализацией (рис. 100). Наряду со световыми показаниями светофоров и остановкой поезда перед красным сигналом можно обеспечить снижение скорости перед жёлтым сигналом, работу сигнализации при движении поезда по неправильному пути, а также предупредить наезд поезда на вагоны, оставшиеся на перегоне при разрыве впереди идущего поезда. Чтобы наглядно проследить за работой автоблокировки с трёхзначной сигнализацией, количество блок-участков на перегоне желательно иметь не менее четырёх. Протяжённость каждого блок-участка должна быть больше длины поезда. Первый и последний блок-участки перегона могут быть связаны соответственно с выходным и входным светофорами станций.
Рис. 100. Принципиальная электрическая схема автоблокировки с трёхзначной сигнализацией
Принцип работы схемы заключается в том, что при зелёном и жёлтом сигналах светофора, свидетельствующих о свободных блок-участках, реле включено, а при занятом участке и красном сигнале светофора — выключено. Такая работа приводит к несколько большему потреблению тока, но надёжность схемы возрастает.
Источник питания должен иметь на выходе постоянное напряжение 16 В и мощность, достаточную для питания реле всех блок-участков, сигнальных ламп светофоров и локомотивов, движущихся по перегону.
В схеме используют одинаковые по характеристикам реле постоянного тока телефонного типа с напряжением включения не выше 10 — 12 В, сопротивлением катушек 200 — 1500 Ом, имеющие не менее трёх переключающих, одного нормально замкнутого и одного нормально разомкнутого контактов, а также резисторы, сопротивление которых определяют расчётом в зависимости от характеристик реле. Работу схемы автоблокировки рассмотрим поэтапно одновременно с расчётом её элементов.
В качестве примера возьмем реле со следующими характеристиками: сопротивление катушки Rк = 1400 Ом, ток начала движения и ток отпускания ярма Iнд = Iотп = 7 мА, ток притяжения Iпр = 10 мА.
Когда блок-участки Б и В свободны, на светофоре СвБ горит зелёный сигнал и реле КБ включено (рис. 101, а), ток проходит через резисторы R1, R3 и катушку реле. Тогда сопротивление цепи тока Rmax можно определить по закону Ома:
Rmax = R1 + R3 + RКБ = Uпит / Iпр = 16 / 0,01 = 1600 Ом,
а сумма сопротивления резисторов составит:
R1 + R3 = Rmax– RКБ = 1600 - 1400 = 200 Ом.
Рис. 101. Работа автоблокировки с трёхзначной сигнализацией:
а — при свободном блок-участке; б — при занятом блок-участке ; в — при последуюшем занятом блок-участке; г — электростенд для проверки параметров
элементов схемы; А — миллиамперметр; В — вольтметр; К — катушка релеСопротивление резисторов можно принять одинаковым R1 = R3 = 100 Ом.
При входе локомотива на блок-участок Б между рельсами параллельно реле КБ и резистору R3 подключен электродвигатель М1 (рис. 101, б), причём основной ток проходит через электродвигатель, так как сопротивление его значительно меньше сопротивления катушки реле. Чтобы в этот момент произошло выключение реле КБ, через него должен протекать ток менее 7 мА. Тогда максимальное напряжение для этой фазы работы схемы составит:
Uотп <= Iотп ( RКБ + R3 ) = 0,007 ( 1400 + 100 ) = 10,5 В
При напряжении на рельсовых нитях менее 10,5 В реле КБ выключится, переключая сигнал светофора СвБ с зелёного на красный. Падение напряжения, обеспечивающее выключение реле при входе локомотива на блок-участок, происходит вследствие того, что в цепь последовательно двигателю М1, имеющему сопротивление 30 — 50 Ом, оказывается включен резистор R1 сопротивлением 100 Ом. Падение напряжения на резисторе R1 и двигателе М1 поделится пропорционально их сопротивлению и реле КБ выключится. Однако падение напряжения на резисторе R1 может оказаться весьма значительным и вызовет резкое уменьшение частоты вращения якоря электродвигателя и его остановку. Чтобы избежать этого и подавать на двигатель стабильное напряжение Uм = 10 В, в цепь параллельно резистору R1 подключают резистор R2. Величина сопротивления резистора R2 зависит от тока, потребляемого двигателем локомотива; поэтому её рассчитывают для всех типов локомотивов, обращающихся по участку. Например, ток двигателя Iм1 = 0,2 А, тогда
соответственно для других типов двигателей:
Iм2 = 0,3 А; R2' = 24,5 Ом;
Iм3 = 0,5 А; R2'' = 13,5 Ом.
Величину R2 принимают по среднему значению (в нашем примере R2 25 Ом). Если ограничиться этим, то у локомотивов с большим потреблением тока напряжение питания будет ниже, а у локомотивов с меньшим потреблением тока — наоборот, что в свою очередь также отразится на скорости движения. Для устранения этого нежелательного явления в цепь параллельно с резистором R2 включают стабилитрон VS и резистор R4. Можно использовать стабилитроны типа Д815А или Д815Б, имеющие ток стабилизации около 1 А и напряжение соответственно 5,6 — 6,2 и 6,1 — 7,5 В. Величину сопротивления резистора R4 рассчитывают по среднему напряжению определённого типа стабилитрона и для различных по потребляемому току двигателей. Например, при стабилитроне Д815А
R4 = Uср / Iм1 = 5,9 / 0,2 = 29,5 Ом,
для других типов двигателей соответственно:
Iм2 = 0,3 А; R4' = 20,3 Ом;
Iм3 = 0,5 А; R4'' = 20,3 Ом.
Принимают среднее значение сопротивления резистора R4 20 Ом.
Так как резисторы R2 и R4 оказываются включенными параллельно, их можно заменить одним резистором R5: