О чём не пишут в книгах по Delphi
Шрифт:
Начиная с Delphi 7, компоненты
Настоятельно рекомендуем прочитать книгу [3]. Несмотря
Глава 3
"Подводные камни"
Данная глава посвящена "подводным камням"— ситуациям, в которых ошибки или неожиданное поведение программы наиболее вероятны. Другими словами, подводные камни — это то, на чем раз за разом спотыкаются многие начинающие программисты. Не претендуя на описание всех подобных случаев, мы, тем не менее, разберем несколько достаточно характерных примеров. Более полный список можно посмотреть в разделе "Подводные камни" сайта "Королевство Delphi" (см. приложение 1).
Подводные камни можно классифицировать по причинам, вызывающим повышенную вероятность ошибок, следующим образом:
□ Аппаратные "камни" — проблемы, вызванные некорректной работой аппаратуры. Наиболее известная из таких проблем — неправильная работа операции деления в блоке FPU первых версий процессора Pentium (в настройках компилятора Delphi можно увидеть опцию Pentium-safe FDIV — при ее включении генерируется более медленный, но правильно работающий на (очень) старых процессорах код для вещественного деления). Но подобные проблемы, к счастью, редки, поэтому мы не будем рассматривать их здесь.
□ Системные "камни" — проблемы, вызванные тем, что системные функции, которые использует программа, работают не так, как описано в документации, или же у этих функций обнаруживаются особенности работы, вообще не упомянутые в документации.
□ "Камни" компилятора — проблемы, вызванные ошибками компиляторе Delphi.
□ "Камни" VCL — ошибки, содержащиеся в библиотеке VCL. Ранее мы уже упоминали о некоторых из них. Далее мы рассмотрим еще несколько имеющихся в ней ошибок.
□ И последний класс "камней" — ошибки, связанные с тем, что программист — человек. Здесь объединены ситуации, когда документация даёт исчерпывающее описание проблемы, аппаратура и программные средства работают безукоризненно, но все новые и новые поколения программистов совершают одни и те же ошибки, потому что ситуация кажется им слишком простой и очевидной, чтобы изучать документацию. (Заметим, что это не говорит плохо о таких программистах — человеческая психология имеет свои законы, столь же объективные, как и законы в естественных науках.) Но компьютер — лишь имитация реального мира, и нередко он не оправдывает наших интуитивных ожиданий. Пункты приведенной классификации не являются взаимоисключающими: далее мы увидим, что некоторые ситуации попадают одновременно под несколько пунктов.
Данная глава посвящена детальному разбору некоторых из подобных ситуаций. Она состоит из четырех разделов. Первый раздел посвящен неочевидным проблемам при работе с целыми числами, второй — при работе с вещественными, в третьем описываются неочевидные моменты использования строк, а в четвертом собрана небольшая коллекция не связанных между собой "подводных камней", с которыми пришлось столкнуться автору книги. Всем ситуациям дано подробное объяснение, чтобы читатель не только запомнил, как делать нельзя, но и понял, почему.
Описание каждого из подводных камней будет сопровождаться примером, который можно найти на прилагаемом компакт-диске. Все примеры (за исключением специально оговоренных случаев) построены следующим образом: на главную (и единственную) форму программы помещаются компоненты
3.1. Неочевидные особенности целых чисел
Аппаратная реализация целочисленной арифметики достаточно очевидна и в большинстве случаев не приносит неожиданностей. К тому же возможные проблемы в том или ином виде упомянуты во многих книгах по Delphi, поэтому даже начинающий программист обычно готов к ним. В этом разделе мы компактно изложим эти проблемы и объясним причины их появления.
3.1.1. Аппаратное представление целых чисел
Delphi относится к языкам, в которых целые типы данных максимально приближены к аппаратной реализации целых чисел процессором. Это позволяет выполнять операции с целочисленными данными максимально быстро, но заставляет программиста учитывать аппаратные ограничения.
Такая реализация целых чисел может также приводить к проблемам при переносе языка на другую аппаратную платформу, но для Delphi это, видимо, не очень актуально.
Целые числа могут быть знаковыми и беззнаковыми. Сначала рассмотрим формат более простых беззнаковых чисел. Если у нас есть N двоичных разрядов для хранения такого числа, то мы можем представить любое число от 0 до 2N– 1. В Delphi беззнаковые целые представлены фундаментальными типами Byte (N=8, диапазон 0..255), Word (N=16, диапазон 0..65 535) и LongWord (N=32, диапазон 0..4 294 967 295).
Фундаментальными называются те типы данных, разрядность которых не зависит от аппаратной платформы. Кроме них существуют еще общие (generic) типы, разрядность которых определяется разрядностью платформы. В Delphi это типы
Знаковые числа устроены несколько сложнее. Старший из N бит, отводящихся на такое число, служит для хранения знака (этот бит называется знаковым). Если этот бит равен нулю, число считается положительным, а оставшиеся N– 1 разрядов используются для хранения числа так же, как в случае беззнакового целого (эти разряды мы будем называть беззнаковой частью). В этом случае знаковое число ничем не отличается от беззнакового. Отрицательные значения кодируются несколько сложнее. Когда все разряды (включая знаковый бит) равны единице, это соответствует значению -1. Рассмотрим это на примере однобайтного знакового числа. Числу -1 в данном случае соответствует комбинация 1 1111111 (знаковый бит мы будем отделять от остальных пробелом), т.е. беззнаковая часть числа содержит максимально возможное значение -127. Числу -2 соответствует комбинация 1 1111110, т.е. в беззнаковой части содержится 126. В общем случае отрицательное число, хранящееся в N разрядах равно X– 2N– 1, где X — положительное число, хранящееся в беззнаковой части. Таким образом, N разрядов позволяют представить знаковое целое в диапазоне -2N– 1..2N– 1– 1, причем значению -2N– 1 соответствует ситуация, когда все биты, кроме знакового равны нулю.