Чтение онлайн

ЖАНРЫ

О чём не пишут в книгах по Delphi

Григорьев Антон Борисович

Шрифт:

Таким образом, синтаксический анализ арифметических выражений — это всего лишь выяснение, корректно ли выражение. Мы же говорили о вычислении выражений, а это уже относится к семантике, т.е., строго говоря, мы здесь будем заниматься не только синтаксическим, но и семантическим анализом. С точки зрения теории синтаксический и семантический анализ разделены, т. е. анализировать семантику можно начинать "с нуля" после того, как анализ синтаксиса закончен. Но на практике легче объединить эти два процесса в один, чтобы пользоваться результатами синтаксического разбора при семантическом анализе. Из-за этого, как мы увидим в дальнейшем, иногда приходится вводить сложные синтаксические правила, которые в итоге описывают тот же язык, что и более простые, чтобы упростить семантический анализ.

На примере выражения

X := Y + Z;
мы могли наблюдать интересную
особенность: для заключения о синтаксической корректности или некорректности отдельной части выражения языка нам достаточно видеть только эту часть, в то время как для выяснения ее семантической корректности необходимо знать "предысторию", т. е. то, что было в выражении раньше. Это объясняется следующим образом: существуют формальные способы описания синтаксиса, позволяющие выделить отдельные синтаксические конструкции. В принципе, язык может использовать другие синтаксические правила, не позволяющие однозначно выделить отдельные конструкции и, соответственно, сделать вывод о допустимости вырванной из контекста строки (примером такого языка является FORTRAN, особенно его ранние версии), но на практике такой синтаксис неудобен, поэтому при разработке языков конструкции стараются все-таки выделять. Это облегчает как чтение программы, так и создание трансляторов языка.

Что касается семантики, то формальные правила ее описания отсутствуют. Поэтому семантика описывается словами, или же язык использует интуитивно понятную семантику. Например, арифметическое выражение "2+2" выглядит очень понятно в силу того, что мы к нему привыкли, хотя с точки зрения математики объяснить, что такое число и что такое операция сложения двух чисел, не так-то просто.

Кроме синтаксического и семантического анализа существует еще и лексический анализ — разделение выражения на отдельные лексемы. Лексемами называются последовательности символов языка, которые имеют смысл только как единое целое. Например, выражение "2+3" не относится к лексемам, т.к. его части — "2", "3" и "+" — имеют значение и вне выражения, а смысл всего выражения будет суперпозицией значений этих частей. А вот идентификатор

TForm
является лексемой, т.к. его невозможно разделить на имеющие смысл части. Таким образом, лексема — это синтаксическая единица самого нижнего уровня. Описание лексических правил может быть обособлено от синтаксических, и тогда сначала лексический анализатор выделяет из выражения все лексемы, а потом синтаксический анализатор проверяет правильность выражения, составленного из этих лексем. Попутно лексический анализатор может удалять из выражения комментарии, лишние разделители и т.п.

Для разбора простого синтаксиса нет нужды проводить отдельный лексический анализ, лексемы выделяются непосредственно при синтаксическом анализе. Поэтому большинство примеров, приведенных далее, будет обходиться без лексического анализатора.

4.2. Формальное описание синтаксиса

Существует несколько различных (но, тем не менее, эквивалентных) способов описания синтаксиса. Мы здесь познакомимся только с самой употребляемой из них — расширенной формой Бэкуса-Наура. Эта форма была предложена Джоном Бэкусом и немного модифицирована Питером Науром, который использовал ее для описания синтаксиса языка Алгол. (Примечательно, что практически идентичная форма была независимо изобретена Ноамом Хомски для описания синтаксиса естественных языков.) В русскоязычной литературе форму Бэкуса-Наура обычно обозначают аббревиатурой БНФ (Бэкуса-Наура Форма). Несколько неестественный для русского языка порядок слов принят, чтобы сохранилось сходство с английской аббревиатурой BNF (Backus-Naur Form). Со временем в БНФ были добавлены новые правила описания синтаксиса, и эта форма получила название РБНФ — расширенная БНФ (далее для краткости мы не будем делать различия между БНФ и РБНФ). Совокупность правил, записанных в виде БНФ (или другом формализованным способом), называется грамматикой языка.

Основные понятия БНФ — терминальные и нетерминальные символы. Терминальные символы — это отдельные символы или их последовательности, являющиеся с точки зрения синтаксиса неразрывным целым, не сводимым к другим символам. Другими словами, терминальные символы — это лексемы. Терминальные символы могут состоять из одного или нескольких символов в обычном понимании этого слова. Примером терминальных символов, состоящих из нескольких символов, могут

служить зарезервированные слова языка Паскаль и символы операций
>=
,
<=
и
<>.
Чтобы отличать терминальные символы от служебных символов БНФ, мы будем заключать их в одинарные кавычки.

Нетерминальный символ — это некоторая абстракция, которая по определенным правилам сводится к комбинации терминальных и/или других нетерминальных символов. Правила должны быть такими, чтобы существовала возможность выведения из них выражения, полностью состоящего из терминальных символов, за конечное число шагов, хотя рекурсивные определения терминальных символов друг через друга или через самих себя допускаются. Нетерминальные символы имеют имена, которые принято обрамлять угловыми скобками:

<Operator>
.

Операция

::=
означает определение нетерминального символа. Слева от этого знака ставится нетерминальный символ, смысл которого надо определить, справа — комбинация символов, которой соответствует данный нетерминальный символ. Примером может служить следующее определение:

<Separator> ::= '.'

В данном примере мы определили нетерминальный символ

<Separator>
, который можем использовать в дальнейшем, например, при описании синтаксиса записи вещественного числа. Если мы затем захотим поменять разделитель с точки на запятую, нам достаточно будет переопределить смысл символа
<Separator>
, а не менять определения всех остальных символов, где встречается этот разделитель.

В более сложных случаях нетерминальному символу ставится в соответствие не один символ, а их цепочка, в которую могут входить как терминальные, так и нетерминальные символы. Примером такого определения может служить описание синтаксиса оператора присваивания в Delphi:

<Assignment> ::=<Var> ':=' <Expression>

При записи синтаксиса в БНФ часто сначала дают определение абстракции самого верхнего уровня, описывающей все выражение в целом, и только потом — определения абстракций нижнего уровня, которые необходимы при ее определении, т.е. порядок определения абстракций может отличаться от принятого в языках программирования определения идентификаторов, согласно которому идентификатор должен быть сначала описан, и лишь затем использован. В частности, в данном примере символы

<Var>
(переменная) и
<Expression>
(выражение) могут быть определены после определения
<Assignment>
.

Операция

|
в БНФ означает "или" — показывает одну из двух альтернатив. Например, если под нетерминальным символом
<Sign>
может подразумевать знак "
+
" или "
", его определение будет выглядеть следующим образом:

<Sign> ::= '+' | '-'

Если альтернатив больше, чем две, они записываются в ряд, разделенные символом

|
, например:

<Digit> ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'

Здесь мы определили нетерминальный символ <Digit> (цифра), под которым можем понимать один из символов диапазона

'0'..'9'
.

Операция

|
подразумевает, что все, что стоит слева от этого знака, является альтернативой того, что стоит справа (до конца определения или до следующего символа
|
). Если в качестве альтернативы выступает только часть определения, то чтобы обособить эту часть, ее заключают в круглые скобки, например:

<for> ::= 'for' <Var> ':=' <Expression>

 ('to' | 'downto') <Expression> 'do' <Operator>

Здесь с помощью БНФ описан синтаксис оператора

for
языка Delphi. В квадратные скобки заключается необязательная часть определения, как присутствие, так и отсутствие которой допускается синтаксисом, например:

<if> ::= 'if' <Condition> 'then' <Operator> ['else' <Operator>]

Здесь дано определение условного оператора

if
языка Delphi. Квадратные скобки указывают на необязательность части
else
.

Поделиться с друзьями: