Один на один с врагом: русская школа рукопашного боя
Шрифт:
• моменты инерции тела при разных позах и положениях оси вращения;
• радиусы инерции отдельных звеньев (сегментов) тела;
• центры качаний физического маятника и т. п.
Понятие массы и силы вытекают из первого закона Ньютона, который обобщает принцип инерции:
«Всякое тело сохраняет состояние покоя или равномерного прямолинейного движения до тех пор, пока воздействие со стороны других тел не заставит его изменить это состояние».
Понятие массы. Стремление тела сохранять состояние покоя или равномерного прямолинейного движения в механике называют инертностью, а закон Ньютона – законом инерции. С проявлением этого
Из опыта известно, что различные тела при одинаковом воздействии со стороны других тел неодинаково изменяют скорость своего движения. Иными словами, они приобретают различные ускорения. Из этого следует, что ускорения зависят не только от величины воздействия, но и от свойств самого тела.
В физике всякое свойство тел выражается определенной величиной. Например, свойство тела занимать часть пространства выражается его объемом.
Так и свойство тела, которое называют инертностью, выражают его массой. Это свойство не зависит ни от условий внешнего воздействия, ни от характера движения. Что бы с телом ни происходило, где бы оно ни двигалось, масса его остается одной и той же.
Таким образом, масса – это физическая величина, которая наряду с такими величинами, как длина, время и др., входит в число основных величин международной системы единиц (СИ).
В качестве эталона массы на международном конгрессе в 1889 году была принята масса специально изготовленного цилиндра из сплава платины и иридия. Эта единица массы получила название килограмм – 1 кг. С достаточной для практики точностью можно считать, что массой в 1 кг обладает 1 л чистой воды при температуре 15 °C.
Для описания упоминаемого в первом законе Ньютона «воздействия со стороны других тел» в механике вводят понятие силы и говорят: на тело действует сила.
Понятие силы (и момента силы) подробно излагается в следующей главе.
Рабочая модель позволяет для конкретного телосложения человека (роста и массы) рассчитать положение его центра масс и моменты инерции для любой позы тела, что очень важно для анализа построения движений.
Определение положения центра масс модели
При исследовании движений человека, как правило, возникает необходимость учитывать не только величину массы, но и ее распределение в теле. На распределение массы тела указывает расположение так называемого центра масс тела.
Центром масс (ЦМ) тела или системы тел называют воображаемую точку, в которой как бы сосредоточена вся масса тела или системы.
Понятие центра масс оказывается существенным тогда, когда в данных условиях движения тело нельзя рассматривать как материальную точку, пренебрегая его размерами.
Положение общего ЦМ рабочей модели человека как биомеханической системы рассчитывается по известной формуле механики:
где yцм – координата общего ЦМ модели относительно начала отсчета;
n – число звеньев тела;
m1 – масса i-го звена тела (или суммарная масса симметричных звеньев);
y1 – координата ЦМ i-го звена тела;
М = mi – общая масса модели тела (сумма масс mi).
Таким образом, положение общего ЦМ модели зависит от расположения масс m отдельных частей тела относительно выбранного
начала отсчета. При изменении позы меняется положение звеньев тела, а следовательно, меняется и положение общего центра масс.Данные для определения масс mi и координат yi центров масс отдельных звеньев тела (в % от общей массы и полного роста человека) приведены в левой части таблицы 4, составленной на основании экспериментальных данных американской службы NАSА.
В правой части таблицы приведены расчетные значения mi и yi для конкретных исходных данных (рост 170 см, масса 80 кг) рабочей модели, изображенной на рисунке внутри таблицы.
При подстановке полученных расчетных значений mi, yi в формулу для определения общего ЦМ имеем:
В основной стойке (руки вдоль туловища) координата уцм составляет 58 % от полного роста, т. е. уцм = 0,58 L (см). А значит, положение общего ЦМ модели находится очень легко. Так, при росте 190 см координата ЦМ в основной стойке:
уцм= 0,58 . 190 = 110,2 см (от пола).
Изложенная выше методика позволяет достаточно просто находить положение ЦМ модели и при изменении позы человека. Например, для тех же исходных данных (рост 170 см, масса 80 кг) в стойке с верхней рамкой (рис. 37) координата Уцм = 98,1 см; в «гимнастической» позе (рис. 37) Уцм = 109,1 см.
При сложной позе тела рекомендуется вычертить рабочую модель на масштабной бумаге («миллиметровке»). Это позволяет определять координаты ЦМ отдельных звеньев тела с очень высокой точностью.
Определение моментов инерции модели
Момент инерции тела есть мера инертности тела при вращательном движении.
Моментом инерции модели (системы тел) относительно некоторой оси называется физическая величина, равная сумме произведений масс mi отдельных звеньев (тел) на квадрат их расстояний ri от рассматриваемой оси:
Это означает, что в деформирующейся биомеханической системе тел, когда ее звенья отдаляются от оси вращения, момент инерции системы увеличивается.
Основными факторами, влияющими на момент инерции, являются масса и длина тела. На рис. 38 показана зависимость момента инерции (в условных единицах) от позы тела и положения оси вращения. Как видно, изменением позы можно очень сильно влиять на момент инерции. Например, группировка при выполнении сальто (в) уменьшает момент инерции по сравнению с прямым положением тела (г) в три раза.