Чтение онлайн

ЖАНРЫ

Один на один с врагом: русская школа рукопашного боя
Шрифт:

Момент инерции тела I0 относительно оси вращения, проходящей через ЦМ, называется центральным.

При его определении можно воспользоваться данными таблицы 4. Расстояния ri относительно оси вращения О—О определяются просто.

Для звеньев тела, расположенных выше оси:

ri = yi – yцм;

для остальных звеньев, расположенных ниже оси:

ri = yцм – yi.

Центральный момент инерции модели:

Таблица 4

Рис. 36

Рис. 37

I0 = miri2 = (m1r12 + m2r22 +…+ mnrn2) = (5,5.60,4+2,65.2.30+…+1,35.2.95,5)=1,3 кг
м2
.

В других случаях предварительно следует вычертить рабочую модель в масштабе и произвести предварительные расчеты.

Момент инерции относительно любой оси, параллельной центральной, можно рассчитать по формуле:

Ic = Io + mil2,

где Ic – искомый момент инерции;

Io – центральный момент инерции;

mi – масса звена;

l – расстояние между осями.

Рис. 38

Инерционное сопротивление увеличивается с отдалением частей тела от оси вращения пропорционально квадрату расстояния. Поскольку материальные точки в теле расположены на разных расстояниях от оси вращения, для ряда задач оказалось удобным ввести понятие «радиуса инерции».

Радиус инерции Rин – это сравнительная мера инертности данного тела относительно его разных осей. Из выражения для момента инерции относительно данной оси I = MRин2 следует:

где М – масса тела.

Найдя опытным путем момент инерции Io, можно рассчитать радиус инерции Rин, величина которого характеризует распределение материальных точек в теле относительно данной оси. Но точное количественное определение этой величины в конкретных случаях нередко затруднено.

Инерционно-массовые характеристики, такие, как масса тела, положение центра масс, величина момента инерции, оказывают существенное влияние на параметры устойчивости, а также на инерционное сопротивление тела вращательному движению.

В частности, чем больше инерционное сопротивление тела, тем меньше угловая скорость его вращения. Например, при вращении тела вокруг вертикальной оси (рис. 38а) с угловой скоростью 1 увеличение инерционного сопротивления (I2>I1) разведением рук в стороны (рис. 38б) приводит к уменьшению угловой скорости (1<1).

Прочность биологических материалов

Опорно-двигательный аппарат человека должен противостоять нагрузкам, обусловленным, во-первых, действием собственного веса и, во-вторых, ускорениями, которые всегда сопровождают любое движение. Особенно большие, хотя и кратковременные нагрузки скелет человека испытывает при ударах, прыжках, падениях и в аварийных ситуациях. Действующие при этом силы могут в 15–30 раз превышать собственный вес человеческого тела.

При нагрузке

кости мышцы и сухожилия как упругие материалы деформируются. На примере тела человека можно проследить все виды деформаций: сжатие, растяжение, изгиб, кручение. Так, кости позвоночника и нижних конечностей в основном подвергаются сжатию и изгибу. Кости верхних конечностей, мышцы, связки, сухожилия – растяжению. Кручению подвержены шея, туловище в пояснице, кисти рук.

Наука о прочности и деформируемости различных материалов и элементов конструкций называется сопротивлением материалов. Под прочностью понимают способность материалов сопротивляться действию внешних сил. Количественной характеристикой способности любого материала сопротивляться разрушению под действием внешних нагрузок служит предел прочности.

По прочности кость человека не уступает некоторым известным материалам и даже металлам. Так, например, предел прочности кости на растяжение в 3 раза больше, чем у древесины вдоль волокон, в 9 раз превышает предел прочности свинца и почти равен пределу прочности алюминия и чугуна. А предел прочности кости на сжатие в 5 раз больше, чем у древесины (вдоль волокон), и превосходит предел прочности бетона в 6–8 раз.

В расчетах на прочность закладывают 3–10-кратный запас прочности. Это означает, что рабочее сечение образца нужно подбирать таким образом, чтобы реальные напряжения в нем были в 3–10 раз меньше указанных в таблице.

Высокая механическая прочность кости человека (впрочем, как и многих животных) обусловлена свойствами исходных компонентов материала кости и ее особым строением. Кость состоит из органических волокон (коллагена), неорганических кристаллов гидроапатита, связующих веществ и воды. Реакция каждого из этих материалов на механические нагрузки различна и сравнительно невелика. И только в сочетании эти компоненты дают прочность, сравнимую с прочностью металлов.

Большое значение для прочности костей человека имеют их конструктивные особенности. Трубчатые сечения (рис. 39а) обеспечивают единство двух взаимоисключающих качеств: прочности и минимального веса.

Интересными особенностями отличается также внутреннее строение пустотелых костей. На рисунке 39б показан полусхематический разрез тазобедренного шарового сустава. Пересекающиеся линии на рисунке – это система тонких внутренних перемычек. Они ориентированы вдоль направлений возможных механических напряжений, возникающих при тех или иных деформациях нагружаемой кости.

Эти перемычки образуются в процессе роста костей под действием внешних нагрузок. При этом реакция костной системы на разрушающие деформации заключается в пассивной ориентировке волокон в направлении тяги. Напрашивается интересный вывод: чем большие нагрузки испытывают кости растущего организма, тем прочнее они становятся.

Рис. 39

Рассмотренные конструктивные особенности строения кости делают ее способной выдерживать огромные нагрузки. Например, при статических испытаниях на прочность бедренная кость (рис. 40а) выдерживала нагрузку F1 = 15 кН (1500 кгс), то есть в 15–20 раз превышающую вес человека. Тазобедренная кость (рис. 40б), поставленная вертикально, в том же опыте выдерживала груз весом F2 = 50 кН (вес автомобиля «Волга»!).

Но прочность ноги определяется самым тонким, а значит, и самым уязвимым ее местом – берцовой костью голени, площадь поперечного сечения которой всего S = 2,8 см2. Требуемое значение предела прочности кости: [] = 1,2 . 108Па (1200 кгс/см2).

Рис. 40

Тогда по условию прочности предельно допустимая нагрузка на одну ногу Р = S[] = 2,8.10 – 4.1,2.108 = 3,36.104H(3360 кгс), то есть при превышающей нагрузке голень ломается.

Поделиться с друзьями: