Огарок во тьме. Моя жизнь в науке
Шрифт:
Когда после моей лекции задавали вопросы (которые благожелательно модерировал выдающийся биолог-теоретик Стюарт Коффман), кто-то в шутку спросил, может ли моя биоморфная программа выращивать не только алфавит, но и деньги. Я моментально вывел на экран вполне убедительный знак доллара (см. букву S в моей подписи на стр. 432), и так мой доклад завершился добродушным смехом.
Эмбриональный калейдоскоп
Хоть мой доклад в Лос-Аламосе и назывался “Эволюция способности к эволюции”, в тот момент я еще не развил эту тему на полную мощность. В главе “Эмбриональный калейдоскоп” в книге “Восхождение на гору Невероятности” я продвинулся в этой области дальше – в направлении, которое кажется мне весьма убедительным. Я уже упоминал о “зеркальных генах”, которые ввел в одной из поздних версий биоморфной программы. Можно представить, что гены, которые управляют симметрией животного в различных плоскостях, встраивают в эмбрион “зеркала”, подобные зеркалам в калейдоскопе. У большинства (но не у всех) животных такое зеркало стоит вдоль срединной линии: благодаря ему они двусторонне симметричны. Мутация в третьей ноге насекомого теоретически может затрагивать
То же верно и для других плоскостей симметрии, хотя они реже встречаются в биологической реальности. На иллюстрации на следующей странице слева изображен компьютерный биоморф, обладающий четырехсторонней симметрией (два “калейдоскопических зеркала” под прямыми углами). В середине – строение радиолярии (изящного микроскопического одноклеточного существа), а справа – ставромедуза (конечно, в другом масштабе). У них всех есть “два зеркала” под прямыми углами, скрытые в эмбриологических глубинах. В случае биоморфа мне это доподлинно известно, потому что я сам написал его программу. О двух реальных животных я не знаю наверняка, но готов поставить что угодно, что их эмбриология по умолчанию ограничена четырехсторонней симметрией. Мое предположение заключается в том, что нововведение в фундаментальной эмбриологии, благодаря которому возникло это калейдоскопическое ограничение, давало определенные преимущества, и я бы назвал это нововведение эволюционным усовершенствованием способности к эволюции.
Иглокожие (морские звезды, морские ежи, змеехвостки и др.) в основном обладают пятилучевой симметрией. Опять же, мне кажется практически очевидным, что соответствующее правило симметрии скрывается в глубинах эмбриологии, и таким образом мелкая мутация, скажем, на кончике одной руки морской звезды, зеркалится на все пять рук (иногда рождаются морские звезды, у которых больше пяти рук, но это не опровергает мое обобщение). Опять же, с учетом того, что симметрия морской звезде чем-то полезна, отзеркаливание мутаций помогает “срезать дорогу” (по сравнению с отдельными мутациями в каждой руке по очереди) и внести изменения, не отступая от пятилучевой симметрии. Следовательно, это явление вполне заслуживает, чтобы его учитывали по категории “эволюции способности к эволюции”. И важно, что все мои попытки вывести пятисторонне-симметричных биоморфов на экране компьютера окончились провалом. Это практически очевидно. Пятилучевой симметрии можно добиться, только если кардинально переписать эмбриологическую схему – что снова возвращает нас к теме эволюции способности к эволюции. “Иглокожие” биоморфы, которых мне удалось вывести на экране, – сплошное надувательство (см. иллюстрацию на этой странице). С виду они напоминают плоского морского ежа, морскую лилию, морского ежа, змеехвостку и двух морских звезд соответственно – но ни один из них не обладает пятилучевой симметрией.
Во времена конференции в Лос-Аламосе цветной “Мак” еще не придумали. Когда я наконец им обзавелся, очевидным шагом в расширении генома биоморфов было добавить новый набор генов, задающих цвет. Тогда же я добавил гены, влияющие на линии, которыми были нарисованы первичные деревья эмбриологического алгоритма. Простые линии все еще дозволялись, но я ввел новый ген, меняющий их толщину, и другие гены, что превращали простые линии в прямоугольники или овалы, оставляли эти формы пустыми или закрашивали их, а также управляли цветом линий и заливки. Эти дополнительные гены открыли дорогу для новой мощной эволюции, искушая человека отбирать биоморфы, чтобы выводить подобия экзотических цветов, ковриков и бабочек. Мне вздумалось вынести компьютер в сад и предложить настоящим пчелам и бабочкам выбирать “цветы” и “бабочек” на экране. Я надеялся, что настоящие насекомые выведут из неопределенных форм подобия настоящих цветов. К сожалению, оказалось – как мне следовало предвидеть, – что яркий дневной свет, привлекающий насекомых, делает изображение на экране практически невидимым. И, как часто бывает с идеями, которые кажутся великолепными, я засунул ее в дальний угол и больше к ней не возвращался. Быть может, подойдут ночные мотыльки? Быть может, сенсорный экран, например, как у iPad, мог бы напрямую реагировать на мотылька, бьющегося о нужную картинку?
Я работал над созданием цветных биоморфов, когда познакомился с Лаллой. Среди множества ее талантов – вышивка крестом (тогда она еще не увлеклась мозаикой, росписью керамики, ткачеством, а также вышивкой на машинке – причем последними двумя она занимается и ныне). Цветные, четырехсторонне-симметричные биоморфы вдохновили ее вышивать подушки и чехлы для стульев: стежки вышивки в точности соответствуют пикселям с экрана компьютера (см. цветную вклейку). Они вызывают восхищение и двадцать лет спустя.
Во всех моих биоморфных программах действовал искусственный, а не естественный отбор. Намного более трудная задача – в интересной форме сымитировать естественный отбор; об этом я мог лишь мечтать. Показательно уже само то, насколько это трудно. Можно представить, как встроить в биоморфную программу критерий
отбора – скажем, по “колючести” или “округлости”. Ради эксперимента так я и сделал. Таким образом удалось обойти человеческий глаз как субъект отбора, и это сработало. Но это не представляло особого биологического интереса. Чтобы сымитировать выживание в мире, пришлось бы сконструировать этот мир, его физику, его (в идеале трехмерную) географию, его правила, по которым биоморфы взаимодействуют с другими объектами и с другими биоморфами, правила, по которым разные предметы не могут занимать одно и то же физическое пространство, и так далее. За годы, прошедшие с публикации “Слепого часовщика”, умные программисты разрабатывали подобные искусственные миры и их физику: например, Стив Грэнд и его Creatures (“Существа”), Торстен Рейл и его Natural Motion (“Естественное движение”) и разнообразные фантазийные среды вроде Second Life (“Вторая жизнь”). Все это за пределами моих возможностей, да и в любом случае я уже избавился от пристрастия к программированию.Артроморфы
В центре рассуждений об эволюции способности к эволюции – “шлюзы”, открывающиеся для новых творческих улучшений. Лос-Аламосская конференция, на которой я представил эту концепцию, сама по себе стала ее метафорой: на той конференции высвободилась некая творческая волна в моем собственном уме (и, вероятно, в умах других участников). Для меня эта волна достигла пика в “Восхождении на гору Невероятности”: среди моих книг эта кажется мне самой недооцененной (ее читают меньше всего – хотя, пожалуй, по новаторству она уступает только “Расширенному фенотипу”).
А вот еще одни ворота, открывшиеся на той конференции. Именно там я познакомился с Тедом Келером. Тед – один из блестящих программистов Apple, и он обладает оригинальным творческим мышлением как раз того рода, который ассоциируется с этой новаторской корпорацией. На конференции он помогал с компьютерными демонстрациями (в том числе и моей), но его опыт и интересы простирались намного шире технической поддержки, и мы с ним много беседовали об эволюции. Позже нам довелось пообщаться побольше, когда он работал в образовательном проекте Алана Кея в Лос-Анджелесе (спонсором которого была Apple). Когда я жил у прекрасной Гвен Робертс и работал над цветными биоморфами (см. стр. 334), мне выпала честь ненадолго присоединиться к экспертной группе того проекта. Мы с Тедом воодушевленно набрасывали идеи: нам легко и стремительно думалось вместе – это чудесное чувство я уже описывал в главах про ос. Мы были одержимы идеей эволюции способности к эволюции, особенно сегментации, и у нас родился план написать новую программу искусственного отбора в духе биоморфов, которая сосредоточится на сегментированных существах, напоминающих членистоногих, и учтет некоторые другие очевидно биологические принципы эмбриологии. Мы назвали новых существ артро-морфами (от “артроподы” – членистоногие).
У исходных биоморфов из “Слепого часовщика” было девять генов. У лос-аламосской версии – шестнадцать. У цветной – тридцать шесть. Каждое расширение генома открывало то, что я называл шлюзами, выпуская на свободу новое эволюционное “творчество”, хоть и с “конструктивными” ограничениями – например, сегментацией или “зеркалами калейдоскопа”. Но каждое из этих расширений было порождено вмешательством программиста. Мне каждый раз надо было начинать практически с нуля и дописывать массу нового кода. В каком-то смысле это служило уместной метафорой для эволюции способности к эволюции: думаю, что и в настоящей биологии переломные изменения, о которых мы говорим, – скажем, возникновение сегментации, многоклеточности, половых различий, пятисторонней симметрии у иглокожих – это редкие и катастрофические сдвиги, чем-то подобные кардинальному переписыванию компьютерной программы. Аналогию можно распространить даже на отладку программ. Ведь можно не сомневаться, что, когда в генофонд при отборе встраивается революционная мутация, от нее возникает множество побочных воздействий, которые постепенно сглаживаются: последующий отбор благоприятствует множеству дополнительных мелких мутаций, смягчающих побочные эффекты в целом полезной масштабной мутации.
Но настоящая биология знает и промежуточный уровень мутаций – не такой революционный, как возникновение многоклеточности, пола, сегментации или новых “зеркал симметрии”, но более масштабный, чем обычные точечные мутации, в которых один нуклеотид Уотсона – Крика заменяется на другой из четверки – С, Т, G или А. В этой промежуточной категории – дупликация (или ее противоположность, делеция) целых участков хромосомы. Дупликация – основной способ увеличения генома. В книге “Рассказ предка” (а именно, в рассказе миноги) я описал ее на примере гемоглобина. Вкратце: у нас есть пять разных типов белков-глобинов, которые кодируются разными генами в разных частях генома. А главное, что все пять произошли от одного-единственного предкового глобина, который кодировался единственным предковым геном. Предковый ген (у миног – наших отдаленных, примитивных родственников – до сих пор есть лишь он один) успешно дуплицировался в процессе эволюции и породил несколько “глобиновых генов”, которые мы имеем сегодня. Обычно, когда мы говорим об эволюционной дивергенции, мы имеем в виду расщепление исходного предкового вида надвое. Две популяции животных разделяются и идут разными дорогами. Здесь же мы все еще имеем дело с эволюционной дивергенцией, но говорим о расщеплениях, которые произошли внутри одной особи: две линии молекулярных потомков остались жить бок о бок в организмах особей будущих поколений.
К слову, меня часто спрашивают: если бы я переписывал “Эгоистичный ген”, изменил бы я его содержание под влиянием нашего прогресса в понимании геномики? Ответ – “нет”, хоть местами и нерешительный: ученые ведь гордятся своей способностью менять точку зрения с появлением новых данных. Но мой “взгляд с точки зрения гена” с 1976 года, скорее, наоборот, упрочился благодаря новым данным, таким как дупликация генов, описанная в рассказе миноги. Теперь мы рассматриваем эволюционную дивергенцию на генном уровне, внутри отдельных особей, то есть нам становится виднее, что отбор скорее действует на генном уровне, а вовсе не на уровне индивидов.