Чтение онлайн

ЖАНРЫ

Огонь! Об оружии и боеприпасах
Шрифт:
Рис. 4.7. Схема имплозивного взрывомагнитного генератора (ИВМГ), идея которого была предложена А. Д. Сахаровым.
На оси — катушка для измерения производной индукции магнитного поля

Разряд конденсатора 1, формирует ток в катушке 2, свитой из множества параллельно соединенных между собой проводков. Проволочки изолированы между собой, поэтому поле свободно проникает как между витками, так и проволочками обратного токопровода. Когда же ток близок к максимуму, срабатывает цилиндрическая детонационная разводка 3. Она значительно проще сферической, описанной в предыдущей главе, точек инициирования в ней — несколько десятков. Из рисунка видно, какими элементами она образована. Итак, в кольце мощного взрывчатого

вещества 4 формируется сходящаяся детонационная волна. Достигнув катушки, она сдавливает витки. Изоляция между проводками при сдавливании перемыкается и далее взрывом сжимается просто трубка из металла (называемая лайнером). С замыканием витков, аксиальное магнитное поле, созданное разрядом конденсатора, оказывается окруженным металлическим лайнером, чей радиус уменьшается под давлением газов взрыва (рис. 4.8).

Рис. 4.8. Сжатие поля лайнером взрывомагнитного генератора под действием давления взрыва

Если лайнер легкий и взрыв сжимает его быстро, то большая часть потока «не успевает» уйти в проводник, индукция магнитного поля внутри лайнера «вынуждена» возрастать, чтобы компенсировать убывание площади сечения лайнера:

Е = E0 (S0/S)2

Существуют работы, посвященные расчету сохранения магнитного потока в имплозивном взрывомагнитном генераторе (ИВМГ), но автор не очень им доверяет, предпочитая определить все, что нужно, из осциллограмм. Чтобы объяснить, что это такое, не обойтись без экскурса в политику..

Понимаю, как возмущает многих нигилизм, все эти неприличные намеки насчет пекущихся о народном благе. Создается ложное впечатление, что суетятся в науке одни фрондеры, то и дело высмеивающие идеи, ниспосланные сверху. Так нет же, подобно «свинье под дубом вековым» из басни Крылова, пробавляются насмешники теми идеями!

…Вспомним, как доходчиво и красочно представляют на графиках наше с вами благосостояние. По оси абсцисс — годы, годы… Но взметнулась вверх красная кривая и сучит по плакату указочка: сейчас вот — да, не очень, но посмотрите: через десять лет скакнет в разы, а через двадцать-то — ой, «запируем на просторе!»

…То же делает и осциллограф — главнейший в экспериментальной физике прибор. Тонкий луч непрерывно эмитируемых электронов вызывает свечение в той точке экрана, на которую он падает. По горизонтали отклоняет этот луч одна пара пластин, на которую подается возрастающее во времени напряжение и пробегает он равномерно сантиметры экрана, только не за годы, а за микросекунды. А на вертикальную пару пластин подается напряжение исследуемого сигнала. Нет никакого сигнала — и чистую, не искривленную линию прочертит осциллограф. Есть сигнал — и получите осциллограмму — тот же график зависимости от времени процесса, который вы исследуете. И, если все подключено правильно, не сомневайтесь: осциллограмма — не партийная программа (хорошо сказал, в рифму!).

Вот и подал автор на вход осциллографа сигнал (рис. 4.9) с пробной катушки, размещенной на оси устройства. В опыте, при сжатии катушки от начального значения внутреннего диаметра 45 мм до конечного 30 мм, магнитный поток уменьшился всего на 9 % от того, который был создан разрядом конденсатора.

Рис. 4.9. Осциллограмма производной по времени магнитной индукции в имплозивном ВМГ: сначала видна косинусоида от тока разряда конденсатора, создающего начальное поле; когда производная приближается к нулю (а, значит, ток — к максимуму), взрыв замыкает витки катушки и сжимает ее к оси, почти двукратно увеличивая индукцию поля внутри (еще раз напомним: на осциллограмме — производная, поэтому индукция пропорциональна площадям соответствующих ее участков). Нелинейность возрастания производной на втором участке вызвана тем, что летящий лайнер «дышит»: в нем «гуляют» волны сжатия и разрежения

От этого ИВМГ требовалась высокая скорость схождения лайнера, а потому катушка была намотана алюминиевыми, а не медными проводками: ради скорости метания проводимость (а значит, и сохранение потока) были принесены в жертву. Да и сжатие имело место лишь до диаметра всего в полтора раза меньшего, чем начальное значение. И это имеет объяснение: представляла интерес лишь та стадия сжатия, на которой еще не развиваются нестабильности и внутренняя поверхность лайнера остается цилиндрической.

Каждый видел, по крайней мере — по телевидению, «кусты» разрывов — это и есть нестабильности. Они хорошо видны на фотографиях 2.8, 3.23, 3.30: слой песка или воды, метаемый взрывом, вырождается в струи, летящие в воздухе.

Нестабильности развиваются при большой разнице в плотности движущегося

вещества и среды, где происходит его движение. Именно такое соотношение и имеет место в ИВМГ: лайнер из металла движется в воздухе, сжимаясь к оси. На полученных с помощью высокоскоростной камеры снимках (рис. 4.10) видно, как на внутренней поверхности лайнера начинают расти «пальцы», а потом образуется «звезда», разрезающая объем сжатия, на чем процесс усиления поля и заканчивается. В опытах автора (о них речь впереди) лайнер выполнял две функции, причем главной являлось формирование ударной волны при ударе лайнера о цилиндрическое тело, а дополнительно достигалось и «поджатие» поля с увеличением магнитной энергии примерно до килоджоуля, что по меркам ИВМГ было ничтожной величиной.

Рис. 4.10. Процесс развитая нестабильностей в лайнере ИВМГ.
Со временем (интервал между снимками 1,6 мкс)внутренняя поверхность лайнера из цилиндрической становится звездообразной

А вот ИВМГ созданные во ВНИИЭФ позволили достигнуть рекордных значений магнитной энергии и ее плотностей. Привыкшие достигать совершенства, специалисты этой организации добились того, что в кинетическую энергию лайнера передавалось до 30 % химической энергии ВВ (теоретически возможный уровень — 32 %). Но химическая энергия распределена по большому объему заряда ВВ, а кинетическая энергия лайнера в конце процесса кумулируется в конечной полости небольших размеров, что и позволило достигнуть рекордного значения плотности энергии магнитного поля (4х107 Дж/см3), на несколько порядков превышающего плотность химической энергии в бризантных ВВ.

Работа, совершаемая взрывом против пондерромоторных сил поля, приводит к «перекачке» энергии взрыва в энергию поля, пока процесс магнитной кумуляции не будет остановлен давлением поля: то есть — обратно пропорционально четвертой степени радиуса лайнера. Площадь сечения лайнера обратно пропорциональна квадрату радиуса, а значит, в той же пропорции возрастает индукция поля; для магнитного же давления эта зависимость еще сильнее — оно пропорционально квадрату индукции, и обратно пропорциональна четвертой степени радиуса лайнера! Закон возрастания давления гидродинамических сил куда слабее — оно всего лишь обратно пропорционально логарифму радиуса. Из этого следует, что магнитное поле, пусть даже очень слабое вначале, в отсутствие нестабильностей всегда станет «сильнее» взрыва и остановит движение лайнера к оси (и, кстати, чем слабее начальное поле, тем выше может быть магнитная энергия в точке остановки). В проведенных во ВНИИЭФ опытах давление магнитного поля индукцией в 1000 Тл достигало 400 ГПа (четырех миллионов атмосфер), что превышало прочностные пределы любых материалов.

ИВМГ наиболее эффективны там, где требуется получить рекордные значения магнитной энергии, но и основной недостаток их очевиден: они могут усиливать поле не более чем на порядок.

Взрывомагнитные генераторы всех типов создавались для применения в ядерном оружии, в частности — для энергообеспечения систем нейтронного инициирования. Но, понятно, предпринимались и попытки расширить область использования их уникальных возможностей. В одной из таких попыток довелось принять участие и автору..

…Профессор Соловьев с кафедры боеприпасов МГТУ (тогда этот вуз назывался МВТУ) попросил о помощи в реализации новой идеи. В то время правительство СССР было обеспокоено угрозой, исходящей от американских крылатых ракет, разворачиваемых в Западной Европе. Полет таких ракет проходил в режиме «копирования» рельефа местности, на небольшой высоте, так что обнаружить их было непросто. Но проблемы возникали и с уничтожением обнаруженной ракеты: она оснащена чувствительными датчиками и, если поражающие элементы пробивали корпус, формировался сигнал подрыва ядерного заряда, с которого при полете над территорией противника снимались все ступени предохранения. Мощный взрыв (энерговыделение — 200 килотонн в тротиловом эквиваленте) не оставлял шансов выжить тому пилоту или расчету, который попал бы в такую цель. Откуда-то возникла оценка (в ее правильности я испытывал сильные сомнения), согласно которой поражающий элемент должен иметь скорость пять, а лучше — семь километров в секунду: тогда он пробьет корпус ракеты и вызовет детонацию взрывчатого вещества ядерного заряда в одной точке. Взрыв произойдет, но он не будет ядерным, потому что сборка с плутонием не подвергнется обжатию со всех сторон (автоматика ядерного заряда просто не успеет сработать зато время, пока произойдут эти события). Вместо шара, сборка в этом случае превратится в нечто безобразное, в котором цепная реакция из-за потерь нейтронов не разовьется. Однако поражающий элемент должен быть именно компактным телом, а не тонкой кумулятивной струей, потому что вероятность того, что последняя инициирует детонацию, довольно мала.

Поделиться с друзьями: