Операционная система UNIX
Шрифт:
Комбинация селектора и смещения образует логический адрес. Блок управления памятью процессора использует селектор для определения соответствующего ему дескриптора. Складывая базовый адрес сегмента, хранящийся в дескрипторе, со смещением, процессор создает линейный адрес (рис. 3.6).
Рис. 3.6. Трансляция адреса с использованием механизма сегментации
Если страничный механизм не используется, полученный линейный адрес является физическим, используемым для непосредственного доступа к оперативной памяти. Однако реализация виртуальной памяти, основанная только на сегментах, не обладает достаточной гибкостью и не используется в современных версиях UNIX. Управление памятью в большинстве систем основано на страничном механизме. Сегменты используются ядром для размещения кода, данных и стека процесса, причем каждый из них имеет нулевой базовый адрес и предел — 3 Гбайт, т.е. всю адресуемую
Страничный механизм
При реализации виртуальной памяти, основанной только на сегментации, весь сегмент целиком может либо присутствовать в оперативной памяти, либо отсутствовать (точнее, находиться во вторичной памяти или в исполняемом файле процесса). Поскольку размер сегмента может быть достаточно велик, одновременное выполнение нескольких больших процессов вызовет серьезную конкуренцию за ресурсы памяти, что в свою очередь приведет к интенсивному обмену данными между оперативной и вторичной памятью. К тому же обмен областями переменного размера, каковыми являются сегменты, достаточно сложен и, хотя фрагментация памяти при этом будет невелика, приведет к низкой эффективности ее использования, оставляя большое количество неиспользуемого пространства.
Страничный механизм обеспечивает гораздо большую гибкость. В этом случае все виртуальное адресное пространство (4 Гбайт для процессоров Intel) разделено на блоки одинакового размера, называемые страницами. Большинство процессоров Intel работает со страницами размером 4 Кбайт. Так же как и в случае сегментации, страница может либо присутствовать в оперативной памяти, либо находиться в области свопинга или исполняемом файле процесса. Основное преимущество такой схемы заключается в том, что система управления памятью оперирует областями достаточно малого размера для обеспечения эффективного распределения ресурсов памяти между процессами. Страничный механизм допускает, чтобы часть сегмента находилась в оперативной памяти, а часть отсутствовала. Это дает ядру возможность разместить в памяти только те страницы, которые в данное время используются процессом, тем самым значительно освобождая оперативную память. Еще одним преимуществом является то, что страницы сегмента могут располагаться в физической памяти в произвольном месте и порядке, что позволяет эффективно использовать свободное пространство [30] .
30
Данный подход напоминает схему хранения файлов на диске — каждый файл состоит из различного числа блоков хранения данных, которые могут располагаться в любых свободных участках дискового накопителя. Это ведет к значительной фрагментации, но существенно повышает эффективность использования дискового пространства.
При использовании страничного механизма линейный адрес, полученный в результате сложения базового адреса сегмента и смещения также является логическим адресом, который дополнительно обрабатывается блоком страничной трансляции процессора. В этом случае линейный адрес рассматривается процессором как состоящий из трех частей, показанных на рис. 3.7.
Рис. 3.7. Трансляция адреса с использованием страничного механизма
Первое поле адреса, с 22 по 31 бит, указывает на элемент каталога таблиц страниц (Page Directory Entry, PDE). Каталог таблиц страниц имеет длину, равную одной странице, и содержит до 1024 указателей на таблицы страниц (page table). Таким образом, первое поле адресует определенную таблицу страниц. Второе поле, занимающее с 12 по 21 бит, указывает на элемент таблицы страниц (Page Table Entry, РТЕ). Таблицы страниц также имеют длину 4 Кбайт, а элементы таблицы адресуют в совокупности 1024 страниц. Другими словами, второе поле адресует определенную страницу. Наконец, смещение на странице определяется третьим полем, занимающим младшие 12 бит линейного адреса. Таким образом, с помощью одного каталога таблиц процесс может адресовать 1024x1024x4096 = 4 Гбайт физической памяти.
На рис. 3.7 показано, как блок страничной адресации процессора транслирует линейный адрес в физический. Процессор использует поле PDE адреса (старшие 10 бит) в качестве индекса в каталоге таблиц. Найденный элемент содержит адрес таблицы страниц. Второе поле линейного адреса, РТЕ, позволяет процессору выбрать нужный элемент таблицы, адресующий физическую страницу. Складывая адрес начала страницы со смещением, хранящимся в третьем поле, процессор получает 32-битный физический адрес. [31]
31
Следует отметить, что большинство современных процессоров и, в частности, процессоры семейства Intel, помещают данные о
нескольких последних использовавшихся ими страницах в сверхоперативный кэш. Только когда процессор не находит требуемой страницы в этом кэше, он обращается к каталогу и таблицам страниц. Как правило, 98–99% адресных ссылок попадают в кэш, не требуя для трансляции адреса обращения к оперативной памяти, где расположены каталог и таблицы.Каждый элемент таблицы страниц содержит несколько полей (табл. 3.2), описывающих различные характеристики страницы.
Таблица 3.2. Поля РТЕ
P | Признак присутствия в оперативной памяти. Доступ к странице, отсутствующей в памяти (P=0) вызывает страничную ошибку, особую ситуацию, о чем процессор информирует ядро, которое обрабатывает ее соответствующим образом. |
R/W | Права только на чтение страницы (R/W=0) или на чтение и запись (R/W=1). |
U/S | Привилегии доступа. Если U/S = 0, только привилегированные задачи (ядро) имеют доступ к адресам страницы. В противном случае, доступ к странице имеют все задачи. |
Адрес | Физический адрес начала страницы (адрес базы). |
Адресное пространство процесса
Адресное пространство ядра обычно совпадает с адресным пространством выполняющегося в данный момент процесса. В этом случае говорят, что ядро расположено в том же контексте, что и процесс. Каждый раз, когда процессу передаются вычислительные ресурсы, система восстанавливает контекст задачи этого процесса, включающий значения регистров общего назначения, сегментных регистров, а также указатели на таблицы страниц, отображающие виртуальную память процесса в режиме задачи. При этом системный контекст остается неизменным для всех процессов. Вид адресного пространства процесса представлен на рис. 3.8.
Рис. 3.8. Адресное пространство в режимах ядра и задачи
Специальный регистр (CR3 для Intel) указывает на расположение каталога таблиц страниц в памяти. В SCO UNIX используется только один каталог, независимо от выполняющегося процесса, таким образом значение регистра CR3 не меняется на протяжении жизни системы. Поскольку ядро (код и данные) является частью выполняющегося процесса, таблицы страниц, отображающие старший 1 Гбайт виртуальной памяти, принадлежащей ядру системы, не изменяются при переключении между процессами. Для отображения ядра используются старшие 256 элементов каталога.
При переключении между процессами, однако, изменяется адресное пространство режима задачи, что вызывает необходимость изменения оставшихся 768 элементов каталога. В совокупности они отображают 3 Гбайт виртуального адресного пространства процесса в режиме задачи. Таким образом, при смене процесса адресное пространство нового процесса становится видимым (отображаемым), в то время как адресное пространство предыдущего процесса является недоступным [32] .
Формат виртуальной памяти процесса в режиме задачи зависит, в первую очередь, от типа исполняемого файла, образом которого является процесс. На рис. 3.9 изображено расположение различных сегментов процесса в виртуальной памяти для двух уже рассмотренных нами форматов исполняемых файлов — COFF и ELF. Заметим, что независимо от формата исполняемого файла виртуальные адреса процесса не могут выходить за пределы 3 Гбайт.
32
При этом физические страницы, принадлежащие предыдущему процессу, могут по- прежнему оставаться в памяти, однако доступ к ним невозможен ввиду отсутствия установленного отображения. Любой допустимый виртуальный адрес будет отображаться либо в страницы ядра, либо в страницы нового процесса.
Рис. 3.9. Виртуальная память процесса в режиме задачи
Для защиты виртуальной памяти процесса от модификации другими процессами прикладные задачи не могут менять заданное отображение. Поскольку ядро системы выполняется на привилегированном уровне, оно может управлять отображением как собственного адресного пространства, так и адресного пространства процесса.
Управление памятью процесса
Можно сказать, что каждый процесс в операционной системе UNIX выполняется на собственной виртуальной вычислительной машине, где все ресурсы принадлежат исключительно данному процессу. Подсистема управления памятью обеспечивает такую иллюзию в отношении физической памяти.
Как уже говорилось, аппаратная поддержка страничного механизма имеет существенное значение для реализации виртуальной памяти. Однако при этом также требуется участие операционной системы. Можно перечислить ряд операций, за выполнение которых отвечает сама операционная система: