Чтение онлайн

ЖАНРЫ

Шрифт:

И если для старых скоростей хватало и управления на электромагнитах, то на новых ракетах скорости были уже чуть ли не в два раза выше — почти шестьсот метров в секунду. Соответственно, возрастали и нагрузки на рулевое управление. Поэтому новые гидравлические приводы и пришлись как нельзя кстати — их мощности хватало, чтобы преодолевать сопротивление воздуха и поворачивать лопасти на нужный угол, а их компактность и вес не перегружали ракету. Причем, если в старых ракетах с оптическим наведением еще как-то можно было обойтись и электрическими схемами, то в новых ракетах с радиолокационным наведением без гидравлики было уже никак. И все потому, что в новых ракетах мы ухудшили саму динамику полета. Старые ракеты направлялись оператором, поэтому он сам мог предсказать положение цели через некоторое время и, соответственно, он мог направить ракету в ту точку. Получалось, что ракета летела почти по прямой в точку предполагаемой встречи с целью, лишь изредка доворачивая по командам оператора, ну и постоянно борясь со своими неоднородностями и неоднородностями воздушной среды. В новых же ракетах, с радиолокационным наведением, ракета летела точно на цель. В каждый момент времени. А цель ведь сдвигается. Соответственно, и ракета постоянно доворачивает вслед за целью. Так мало того, что цель сдвигается, радиолокационный сигнал тоже непостоянен, он показывает положение цели плюс-минус какой-то градус, причем, из-за неоднородности приходящих сигналов, этот сигнал может чуть ли не скакать на несколько градусов. Мы, конечно, сразу же сделали фильтры, которые выдавали средний угол между несколькими замерами, поэтому такое скакание сглаживалось. Но все-равно ракете приходилось маневрировать не только из-за неоднородностей, но еще и из-за движения цели и "движения" сигнала. И особенно —

на конечном участке, где до цели оставалось уже совсем ничего, соответственно, в каждый момент времени она сдвигалась на все больший угол и ракете приходилось все сильнее маневрировать. То есть перегрузки возрастали многократно. Все потому, что мы пока не разработали схему автоматического предсказания положения цели. Правда, осенью сорок третьего ожидалась рабочая схема ручного предсказания, когда оператор мог направлять ракету не на цель, а в точку пространства перед целью — почти как в старых ракетах с визуальным наведением, но на новой технологической базе. Но в августе сорок третьего такой аппаратуры еще не было. Так что без гидравлики было уже совсем никак.

Правда, пришлось очень много поработать над самой схемой управления. Ведь сам поворот не происходит одномоментно — раз! — и повернули. Нет, это целый переходный процесс. Ведь на момент поворота лопасти ракета летит еще в старом направлении, соответственно, чтобы повернуть, необходимо преодолеть инерцию этого движения и направить ее на новый путь. А тут еще и упругость воздуха, который сначала препятствует движению ракеты, а потом, когда ракета поменяла свое положение, это сопротивление постепенно исчезает, но при этом еще продолжает действовать инерция, да к тому же, часть корпуса и рулей находится в завихрении, в так называемой тени. А при достаточно резких поворотах начинает играть роль и инерция отдельных частей ракеты. В общем, нюансов было просто море. И все их пришлось исследовать. Так, только за второе полугодие сорок второго мы выполнили более трех тысяч продувок, снимая показания с датчиков. И еще порядка шестисот пробных запусков, чтобы выявить то, что не учли или не проявилось при продувках — для этих целей мы сделали специальные исследовательские ракеты, в которых вместо боевой части были установлены парашютная система и дополнительная передающая аппаратура, которая считывала и передавала данные со множества датчиков, установленных на ракете — давление на рулях, сопротивление рулям, давление на корпусе в нескольких точках, угловые ускорения. И на основе этой информации мы потом разбирали полет — почему пошла штопором, или почему воткнулась в землю сразу после старта, или почему вдруг завиляла после вроде бы небольшого поворота. Мы составляли математическую модель полета, чтобы затем переложить ее в коэффициенты усиления каскадов схемы управления.

Глава 9

И сорок второй и сорок третий мы работали только по статически устойчивым ракетам, которые, если к ним кратковременно приложить возмущающее их полет воздействие, через некоторое время возвращаются в первоначальное положение. Так-то, при достаточно мощных приводах органов управления, высоком быстродействии самих этих органов и достаточности их аэродинамических усилий, можно отправлять в полет хоть стол — просто рулевым приводам придется сильнее компенсировать постоянно возникающие опрокидывающие моменты, отчего частота колебаний приводов будет очень высокой и с довольно большими амплитудами. И как раз статически устойчивая ракета требует меньших частот колебаний приводов, чем статически неустойчивая, то есть ей требуется реже "махать" рулями — ведь она стремится вернуться в стабильное состояние, как бы сама гасит возникающие от возмущений колебания, а вторую — наоборот — надо постоянно возвращать в устойчивое состояние — и для них нужны рули с частотой колебаний — точнее — управляющих поворотов — как минимум в два-три раза выше, чем для устойчивой, то есть стабильной ракеты. Соответственно, неустойчивой ракете требуется более мощный привод, что увеличивает массу оборудования, а следовательно и ракеты. Правда, есть и обратная зависимость — статически устойчивая ракета требует больше усилий для поворотов, то есть при одинаковых приводах она менее маневренная, и чтобы повысить маневренность, ей, наоборот, потребуются более мощные приводы. Так что после некоторых значений потребных угловых скоростей поворота выгоднее применять как раз неустойчивые ракеты. Но пока, для сравнительно небольших скоростей наших целей, было разумнее применять статически устойчивые ракеты, тем более что не требовалось попадать ракетой непосредственно в самолет, а можно было подорвать ее на некотором расстоянии — поражающие элементы и ударная волна вполне способны разрушить или хотя бы повредить тонкие элементы конструкции немецких самолетов — все-таки это не баллистическая ядерная боеголовка, и даже не бронированный ударный вертолет.

Но и на этом пути нашим ракетчикам пришлось хорошенько потрудиться. Ведь, к сожалению, нельзя просто так взять и поменять, скажем, длину ракеты, или размах крыльев — от этого меняется вся аэродинамика ракеты. При ее полете аэродинамическое сопротивление приложено в центре давления и давит назад. И при маневрах аэродинамические силы прикладываются к центру давления. А вращаться под действием этих сил ракета будет вокруг центра масс всех ее частей. И в зависимости от их взаимного расположения этих центров характер вращения будет различным, а в зависимости расстояния, или плеча между этими центрами — зависит скорость этого вращения. Можно представить ракету в виде стержня, который прибит гвоздем в центре масс, а аэродинамические силы — рукой, которая толкает стержень в точке, соответствующей центру давления, причем толкает, как правило, не точно вдоль стержня, а почти всегда — под некоторым углом. Так, если центр масс находится впереди центра давления, то получается, что толкание выполняется в направлении от центра масс, то есть стержень как бы тянут. Поэтому, слегка повернувшись вокруг центра масс, ракета успокоится в новом положении, до следующего толчка — это статически устойчивая ракета. А вот если центр масс находится сзади, то аэродинамические силы, наоборот, направлены в сторону центра масс и опрокидывают ракету, поворачивая ее вокруг центра масс вверх или вниз или вправо-влево — ракета получается статически неустойчивой. Поэтому местоположение этих двух центров оказывает определяющее влияние на устойчивость ракеты в полете. Да и не только ракеты, а любого летящего тела.

То есть надо так разместить центр давления, чтобы он был сзади от центра масс, причем не слишком близко, чтобы был запас устойчивости, иначе придется тратить много энергии на выравнивание ракеты. Но и слишком далеко размещать тоже не надо, иначе много энергии придется тратить уже на ее повороты. И вот, наши конструктора после каждого изменения в конструкции ракет пересчитывали положение центров давления, и если они не устраивали, то меняли габариты отдельных элементов. Собственно, ракету разбивали на отдельные элементы — носовую часть, цилиндрическую часть с блоком управления и ракетным двигателем, хвостовую часть, рулевое оперение и крылья — и для каждой рассчитывали центр давления данной части, а затем, исходя из расстояний между ними — общий центр давления всей ракеты. И затем сравнивали его с положением центра масс. Причем обе величины менялись с течением времени полета — от давления воздуха и скорости полета менялось положение центр давления, а центр масс менял свое положение по мере выгорания топлива — он сдвигался вперед, увеличивая устойчивость и уменьшая маневренность. Соответственно, конструктора разбивали возможные режимы полета на сетку значений скорость-давление воздуха — и для каждого узла рассчитывали положение центров. Для "вертикалок" было проще — они летели только вверх, поэтому у них хотя бы давление менялось только в одну сторону. У новых же ракет, что мы впервые применили в начале августа сорок третьего, полет мог происходить и по горизонтали. Соответственно, набор сочетаний давление-скорость-масса увеличивалась многократно. И без ЭВМ расчеты заняли бы очень много времени. А так, за полчаса просчитав все контрольные точки, ЭВМ распечатывала несколько страниц с цифровыми колонками, и конструктора погружались в их изучение, изредка выдавая "Ага! Я же говорил!" или "Зар-р-раза! Опять ушла в минус!". И по результатам расчетов делали перекомпоновку — удлиняли или укорачивали нос, чтобы сдвинуть центр давления назад или вперед, удлиняли или укорачивали корпус, чтобы сдвинуть центр вперед или назад, меняли размах или форму крыльев — последним пользовались чаще всего, так как корпус нельзя было делать слишком коротким, иначе не поместится топливо и аппаратура, его нельзя было делать и слишком длинным, чтобы он мог выдерживать перегрузки при маневрах — ограничений хватало. Мы поэтому-то и оставили толщину стенок в два миллиметра и дальше не снижали — иначе без стрингеров корпус получался очень нежестким и сминался даже при небольших маневрах — это мы выяснили даже без полетов,

на стендах. А вот что проявилось только в полетах, так это возникновение резонанса между рулями и корпусом — при утоньшении стенок собственная частота корпуса уменьшалась, а при уменьшении устойчивости возрастала частота колебаний рулевого оперения, так как приходилось чаще подправлять начинавшую сходить с курса ракету. И в какой-то не очень прекрасный момент эти частоты стали близки. Первая ракета просто отказала и грохнулась на землю. Оказалось, в ней разрушились три лампы — аппаратура не была разбита вдребезги только потому, что парашютная система управлялась в том числе и набегающим потоком, механически — прекратился поток — выпускай парашют. Но причина этого была непонятна. И пришлось сделать более сотни запусков, прежде чем нашли виновника — ведь частоты совпадали далеко не всегда — в какие-то дни воздух был, например, спокоен, и требовалось меньше подруливаний — ракета идет нормально. В какие-то дни, наоборот, возмущений воздуха слишком много, и требуются постоянные подруливания, но, видимо, рулевое управление быстро проскакивало резонансные частоты — и ракета снова летела нормально! На этом резонансе мы потеряли полтора месяца — как раз октябрь сорок второго и половину ноября.

Много промучались, но сделали кучу стендов, так что все больше испытаний проводилось на земле. Так, в январе сорок третьего мы сделали только семнадцать пробных запусков уже практически готовых изделий, тогда как еще в июле сорок второго пробных запусков было больше сотни — с появлением каких-никаких математических моделей полета мы смогли точнее предсказывать поведение всей конструкции и отдельных узлов, и на основании этих предположений ставить опыты для проверки — протрясти на вибростендах с нужными ускорениями, продуть ракету в сверхзвуковых потоках при заданной последовательности маневров, чтобы уточнить перегрузки — одних сверхзвуковых труб у нас было уже пятнадцать штук. И, надо заметить, даже для дозвуковых труб это был не просто мощный мотор с вентилятором — ведь ракета летит в более-менее однородном воздушный потоке, а вентилятор дает очень возмущенный поток, соответственно, его надо успокоить — пропустить через длинную трубу с поворотами, да еще через несколько коробчатых конструкций с множеством длинных и узких "коробов", чтобы они запараллелили потоки. А для сверхзвуковых труб недо еще добавить и сопло Лаваля, чтобы из дозвукового потока получить сверхзвуковой.

Ну, по сверхзвуковым потокам во второй половине сорок второго у нас было уже много специалистов. И появились они в процессе разработки оборудования для напыления металлов. Получив первые работающие схемы еще осенью сорок первого, разработчики не стали останавливаться на достигнутом, а наоборот, стали наращивать свои усилия — как количеством оборудования для исследований так и самими исследователями. И помимо исследований свойств самих напыляемых материалов, важной частью стали исследования истечения горячих газов через сопла — ведь там надо сжигать топливо — керосин, бензин, метан или что-то другое, подавать продукты сгорания в патрубок, где они будут подхватывать распыляемый металл, расплавлять его и затем переносить к поверхности напыления. Так вот на всем этом пути требовалось поддерживать и нужную температуру, и скорость потока, и его постоянство. А это — практически газодинамика в неприкрытом виде. Быстро поняв, что чем выше скорость потока, а, значит, и частиц напыляемого металла, тем плотнее и надежнее получаются напыляемые слои, исследователи начали работать со сверхзвуковыми потоками, благо сопло Лаваля было известно уже не одно десятилетие. Но с режимами, методами регулирования, составами горючей смеси наши работали еще полгода, зато к осени сорок второго, практически через год после начала работ вообще по напыляемым металлам, мы уже использовали аппараты со сверхзвуковым напылением. Помимо более прочных покрытий, мы получили наборы аппаратуры для исследований в термодинамике, а также более двухсот более-менее опытных исследователей. И вот, покорив очередную высоту, эта беспокойная команда стала озираться вокруг — где бы еще приложить свои силы. Ведь идти на фронт мы им запретили — повоевали каждый по паре-тройке месяцев — и хватит. Пусть отдают долги Родине в цехах и лабораториях. И на фронт-то отпускали не сразу всех, а по очереди. А не отпустить было нельзя — ситуация была близка к бунту — "Все воюют, а мы тут в теплых местечках сидим!". Ну, хорошо — повоевали, получили ордена и медали, некоторые даже пролили кровь, а теперь — за работу! Некоторых из этих ученых-милитаристов мы отвлекали на ракетную тематику и ранее, когда надо было разбираться с соплами — как с изучением советских конструкций, так и с разработкой собственных. Поэтому тема лежала фактически на поверхности и, так как проблема создания собственных конструкций встала уже в полный рост, мы, что называется, нашли друг друга. Временно оставив на разработках новых аппаратов напыления лишь небольшую часть, остальные исследователи дружно навалились на ракеты — в управлении скоростными газовыми потоками они съели уже не одну собаку.

Ведь истечение газов не менее важно, чем горение пороха, так как сначала мы контролировали скорость горения только давлением — чем выше давление, тем выше скорость горения. Это объясняется тем, что, во-первых, давление приближает область горения к поверхности шашки, точнее, горение начинается раньше, во-вторых, чем выше давление, тем выше теплообмен, соответственно, тем больше шашка получает тепла и тем интенсивнее ее состав разлагается и испаряется, в свою очередь поддерживая горение.

В замкнутом пространстве, каковым является гильза патрона или снаряда, этот процесс нарастает лавинообразно, и порох сгорает очень быстро, а при некоторых значениях может и сдетонировать. В ракетных же двигателях присутствует сопло, которое выпускает часть газов наружу, за счет чего и создается реактивное движение. Так вот совместной задачей пороховиков и сопловиков и было поддерживать нужное давление в двигателе при нужном расходе газов в реактивной струе. То есть пороховики обеспечивали скорость горения, достаточную для генерации газов, а сопловики обеспечивали расход газов, формируя и реактивную струю, и ограничивая давление в камере. И баланс прихода и расхода газа надо было соблюсти так, чтобы давление не нарастало постоянно, все увеличивая тем самым скорость горения, но и не падало бы, тем самым уменьшая эту скорость.

Так, при давлении в двадцать атмосфер скорость горения — четыре миллиметра в секунду, при ста атмосферах — уже сантиметр, при двухста — полтора. Но это для одной марки пороха. Для другого пороха картина будет выглядеть иначе — при двадцати атмосферах он вообще не будет гореть, а при сорока горит со скоростью сантиметр в секунду, но при двухста его скорость всего четырнадцать миллиметров. То есть марки пороха различались не только калорийностью, но и реакцией на повышение давления — одни повышали скорость резче, другие — мягче. Более резкие хороши для стартовых ракет, а вот для маршевых двигателей надо бы помягче, ведь давление в камере двигателя непостоянно из-за непостоянства характеристик шашек — недостаточно тщательное смешивание или прессовка оставляют в шашке неоднородности, и при достижении их огонь движется то быстрее, то медленнее. Соответственно, давление то растет, то падает. В некоторых пределах, конечно, но все-таки. Соответственно, более резкий порох при том же повышении давления начнет гореть более быстро, чем более мягкий, и полет получится более рваным, это если ракету вообще не разорвет большим давлением.

Но скорость горения в общем-то зависит не столько от давления, сколько от температуры у поверхности шашки, а уж как она поддерживается — другой вопрос. Так, при пятиста градусах горения практически нет, при тысяче оно идет со скоростью три миллиметра в секунду, при тысяче двухста — уже восемь, а при полутора — уже почти два сантиметра. Причем температуру можно поддержать не только давлением, но и введением компонентов, которые будут гореть жарко. С моей подачи в порох начали вводить порошок алюминия, что позволило снизить давление в камере на пять атмосфер, и заодно повысить стабильность горения — нужная температура-то теперь была практически всегда. Но порошок отнимал кислород у клетчатки, поэтому наши стали сыпать в порох еще и селитру. Ну, в принципе она является окислителем в черном порохе, поэтому это было логично. Но в моей памяти всплыло, что в ракетах использовали перхлорат аммония, и я закинул и эту мысль. Оказалось, что он еще лучший окислитель — в его молекуле было на один атом кислорода больше — четыре атома вместо трех, как в калийной селитре. И разлагался он начиная уже со ста пятидесяти градусов, а не с четырехсот, как селитра, то есть стабильность зажигания и горения смеси с участием перхлората была выше. К тому же он при разложении давал только газообразные вещества, в то время как селитра со своим калием давала твердые частицы — то есть повышался еще и выход газа, а ведь именно газ давал реактивную струю. Так мы немного приблизились к смесевому топливу, о котором я либо забыл, либо вообще не знал, а у местных так и вообще без вариантов. Но впервые идея была реализована осенью сорок второго, когда мне продемонстрировали яркое горение обычной смолы с гудроном — наши просто смешали все это с алюминиевым порошком и тем же перхлоратом аммония:

Поделиться с друзьями: