Чтение онлайн

ЖАНРЫ

Пиксель. История одной точки
Шрифт:

Рисунок 2.5 – аналоговый, а рисунок 2.6 – цифровой. Вертикальные линии на втором называются отсчетами для аналоговой кривой – или выборкой. В случае доски с гвоздями для двумерной поверхности гвозди будут отсчетами соответствующей аналоговой поверхности. Замечательная теорема Котельникова гласит, что нам не нужна сама гладкая кривая для представления звука или сама гладкая поверхность для представления визуальной сцены. Нам нужны только отсчеты. Другими словами, на аналоговую бесконечность точек между отмеченными на первом рисунке черными зарубками можно не обращать внимания! Кажется, он говорит, что ничто может представлять нечто. Как такое возможно? Ответ кроется, конечно же, в слове «кажется».

Вы можете вообразить, что, если просто сделать очень-очень много отсчетов и разместить их достаточно близко друг к

другу, они станут аналоговой звуковой кривой. У многих людей есть такое же интуитивное представление, что пиксели – какими бы они ни были, – расположенные достаточно близко друг к другу, станут соответствующей визуальной сценой. Но такое предположение ошибочно. Вы не можете достичь достаточно близкого расположения. Невозможно заставить цифровую бесконечность достичь плотности аналоговой бесконечности. Нельзя сосчитать неисчислимое. Но Котельников, кажется, говорит, что можно. Тогда как же это сделать?

Более того, его теорема гласит, что точки, показанные на втором рисунке, уже расположены достаточно близко друг к другу, то есть вы не получите ни преимуществ, ни дополнительной информации, взяв отсчеты, расположенные еще ближе. Вы все еще в недоумении? Я надеюсь на это, потому что сейчас я раскрою суть вопроса и продемонстрирую элегантность его идеи.

Итак, с этими витающими в воздухе вопросами мы уже почти готовы подступиться к великой идее Котельникова. Но сначала вернемся к идее Фурье, поскольку теорема Котельникова базируется на ней. Фурье научил нас, что звук или изображение могут быть представлены как сумма волн. На рисунке 2.7 показана одна из волн, которые дают в сумме аналоговый фрагмент, использованный мной в качестве примера и для удобства изображенный сверху (места отсчетов обозначены точками). Вы можете увидеть, что в этом фрагменте нет колебаний вверх или вниз более быстрых, чем на волне, поэтому можно считать, что у нее самая высокая частота. Все остальные волны в сумме волн Фурье для этого фрагмента обладают более низкими частотами, иначе мы бы увидели где-то в этом фрагменте более быстрое колебание.

Перейдем к сути замечательной идеи Котельникова: если вы делаете отсчеты некоей гладкой аналоговой кривой с удвоенной частотой самой высокой частоты волн Фурье из составляющей ее суммы, то вы всегда сможете точно восстановить обратно эту гладкую кривую, используя только сделанную выборку. Отсчеты дискретные, разрозненные, отделенные друг от друга – определенно не гладкие. Это первая часть его идеи, великая теорема отсчетов – та часть, в которой утверждается, что аналоговую гладкость можно заменить цифровой несвязностью. Во второй части рассказывается, как выполнить фактическое восстановление исходного аналогового сигнала из цифровых отсчетов.

Рис. 2.6

Котельников стоит на плечах гиганта Фурье. Частоты Фурье отражают скорость изменения аналогового изображения в поле зрения. Затем гениальная идея Котельникова подсказывает нам, как представить волны Фурье в цифровом виде. Удивительно, но для каждого цикла самой быстро меняющейся волны достаточно всего двух отсчетов. Нетрудно догадаться, почему именно двух: одно измерение для гребня волны, а второе – для впадины.

Пиксель

В цифровом мире у отсчетов Котельникова для визуального поля есть устоявшееся название. Мы называем их пикселями. Вот оно! Это и есть определение пикселя. Оно тесно связано как с Фурье, так и с Котельниковым. Отсчеты Котельникова – вот что делает Цифровой Свет возможным.

Пиксели – это не маленькие квадратики! Некоторых это изрядно удивит, потому что очень часто пиксели описывают именно так – настолько часто, что люди повсеместно отождествляют пиксели с плотно расположенными маленькими цветными квадратиками. Это, возможно, самое распространенное заблуждение зарождающейся цифровой эпохи, а слово «пикселизация» его только укрепило.

Рис. 2.7

На самом деле у пикселей нет формы.

Это просто отсчеты, взятые в узлах регулярной сетки, – вспомните наш пример с гвоздями. Они представляют собой абстрактные точки нулевого размера, не имеющие длины, ширины и толщины. Они невидимы и бесцветны. Это просто число, кодирующее оттенок серого, или три числа, обозначающие три интенсивности цвета. Как мы увидим, именно восстановление аналогового из цифрового с использованием идеи Котельникова придает пикселям форму.

Самому слову «пиксель» пришлось побороться за право на существование. Пиксели поначалу назывались по-разному: например, точки, массивы точек, растровые элементы, точки изображения и элементы изображения. Последний вариант победил, но затем разгорелась битва за более короткий термин. В течение многих лет IBM и AT&T пытались сокращать «элемент изображения» (picture element) до pel. Но энергичное молодое сообщество середины 1960-х, занимавшееся обработкой изображений, одержало победу над усилиями гигантских корпораций, настояв на сокращении pixel. На самом деле для молодых гиков, работающих с компьютерной графикой, вроде меня, достигших совершеннолетия в те бурные годы, было делом чести обеспечить победу контркультуры «пикселя», свергнув «пел» Голубого Гиганта и Матушки Белл. Ричард Лайон, тщательно изучив историю словоупотребления, нашел самое раннее упоминание термина [2] pixel в документе 1965 года за авторством Фреда Биллингсли из Лаборатории обработки изображений, входившей в Лабораторию реактивного движения Калифорнийского технологического института (рис. 2.8). А самое раннее публичное использование pel зарегистрировано в статье профессора Массачусетского технологического института Уильяма Шрайбера в 1967 году.

2

Голубой Гигант (Big Blue) – прозвище компании IBM. Матушка Белл (Ma Bell) – прозвище компании Bell Labs. – Прим. ред.

В 1970-х годах было выдано много патентов, содержащих как пиксель, так и пел, причем в количественном отношении преобладали патенты с использованием первого термина. Неудивительно, что большинство патентов той эпохи с термином «пел» принадлежали IBM или Bell Labs компании AT&T. Если бы Найквист или Шеннон использовали некий термин для обозначения пикселя – чего они не делали, – их выбор наверняка пал бы на pel, термин, принадлежащий Матушке Белл.

Пиксель напрямую связан с теоремой отсчетов; выборки и пиксели объединены еще с рождения. Как ни странно, в теории цифрового звука нет специального слова, такого как «пиксель», для обозначения элемента выборки, или «семпла», хотя цифровой звук существует благодаря все тому же трюку с использованием отсчетов Котельникова. К сожалению, применительно к аудио слово «семплирование» имеет другое значение. В хип-хопе, например, так называют заимствование фрагментов чужой музыки длительностью в несколько секунд, их соединение или смешение. Чтобы не возникало путаницы, для обозначения звукового отсчета я буду использовать специальное слово «соксель» (soxel), сокращение от sonic element (звуковой элемент).

Игры в имена

Весьма проблематично, что приоритет в открытии теоремы отсчетов в сегодняшних Соединенных Штатах приписывается Шеннону. Если оставить в стороне весь остальной мир, легко понять почему. Клод Шеннон – громкое имя в Америке. Теорему отсчетов он сформулировал в статье 1948 года «Математическая теория связи». В очень знаменитой классической статье 1949 года «Связь при наличии шума» он сформулировал и доказал теорему выборки в том виде, который сейчас используется во всем цифровом мире, а особенно применительно к Цифровому Свету. Его авторитет рос по мере того, как он получал различные престижные награды – например, национальную научную медаль США и медаль почета Института инженеров электротехники и электроники (IEEE). Он стал первым лауреатом премии, присуждаемой Группой теории информации IEEE и впоследствии названной в его честь. Он получил широкую известность на международном уровне и стал первым лауреатом премии Киото в области математики – награды не менее престижной, чем Нобелевская премия.

Поделиться с друзьями: