По следам бесконечности
Шрифт:
Счетные множества имеют мощность первого числового класса. Следующая мощность может быть приписана всем числам второго класса и т. д. Так строится шкала последовательно увеличивающихся мощностей бесконечных множеств.
«Все так называемые доказательства против возможности актуально-бесконечных чисел по существу ошибочны, — писал Кантор в одной из своих работ. — Потому что они заранее приписывают или скорее навязывают бесконечным числам все свойства конечных. Между тем, бесконечные числа должны образовать благодаря своей противоположности конечным числам совершенно новый числовой вид, свойства которого вполне зависят от природы вещей и образуют предмет исследования,
Главной отличительной особенностью теории Кантора явилось то обстоятельство, что бесконечные множества рассматривались в ней в завершенном виде как совокупность бесконечного числа всех содержащихся в них элементов.
«Эта бесконечность элементов, — писал советский академик Н. Лузин, — „схваченная“ вместе в одно целое данным характеристическим свойством, является тем самым уже данной вся целиком, уже сформированной и неизменной и, следовательно, как бы уже неподвижной и замкнутой в себе».
Георгу Кантору удалось достичь блестящих результатов и решить ряд очень важных задач, имевших первостепенное значение для развития математической науки.
Но, пожалуй, одной из самых замечательных особенностей новой теории множеств явилась ее небывалая общность. Операции с множествами и подмножествами не накладывают абсолютно никаких ограничений на характер объектов, составляющих эти множества. Они могут быть одушевленными или неодушевленными, маленькими или большими, реальными или воображаемыми. Это обстоятельство привело к тому, что понятия теории множеств стали в одни ряд с наиболее общими понятиями логики.
А в одном пункте теория множеств даже ушла вперед: ведь ее понятия относятся к бесконечным классам объектов, в то время как даже самые общие понятия формальной логики относятся к конечным классам. При этом оказывались нарушенными обычные нормы мышления. Потеряло прежний универсальный смысл утверждение «целое больше своей части». Для трансфинитных чисел операция сложения оказалась зависимой от порядка слагаемых.
После работ Кантора операции с бесконечными множествами стали проводиться как если бы все их элементы находились в нашем распоряжении. Бесконечное в самом деле приобрело актуальный характер.
Смелые идеи Кантора, вступившие в противоречие с многовековыми традициями, господствовавшими в математике, идеи, которые приводили к неожиданным и парадоксальным результатам, встретили серьезную оппозицию в лице многих ученых того времени, хотя ни один значительный математик не выступил в печати с отрицанием теории множеств или ее отдельных положений.
Предубеждение к повой теории в какой-то мере объяснялось еще тем, что Кантор, будучи глубоко верующим католиком, придавал своим статьям откровенно выраженную теологическую форму.
Так, он, например, пытался проводить параллель между свойствами бесконечных множеств и библейскими представлениями о боге.
И все же большинство так или иначе сознавали необходимость теории множеств для самых разнообразных областей математики, В частности, с неизменным вниманием относился к исследованиям Кантора его бывший учитель — один из крупнейших математиков того времени немецкий ученый Вейерштрасс. Когда в 1874 году Кантор доказал несчетность множества действительных чисел, заключенных на отрезке, Вейерштрасс убедил его опубликовать полученный результат и сделал все, чтобы работа Кантора была напечатана в самом распространенном математическом периодическом издании того времени «Журнале чистой и прикладной математики».
В августе 1897 года в Цюрихе состоялся первый Международный конгресс
математиков, на котором присутствовало около 250 ученых из 16 стран. В первый же день на пленарном заседании выступал А. Гурвиц с докладом по теории так называемых аналитических функций. Все его выступление было пронизано теоретико-множественными идеями.Теории множеств посвятил свой доклад также известный французский математик Ж. Адамар.
Это было официальным признанием теории.
Третий кризис
Казалось, все говорило о том, что теперь шествие теории множеств будет победным. Стремительно росло число публикуемых работ. Чуть ли не поголовно увлекались новой теорией молодые математики и студенты. Наконец получил глубокое и всестороннее обоснование анализ бесконечно малых.
— Мы можем сказать сегодня с удовлетворением, — торжественно объявил один из самых выдающихся математиков XIX века французский ученый Анри Пуанкаре (1854–1912), — что достигнута абсолютная строгость.
Вообще это был весьма любопытный период в истории естествознания, когда не только в математике, но и в физике создалось ощущение безмятежного благополучия, которое уже ничто не сможет нарушить. Разумеется, ученые знали, что есть еще немало проблем, которые предстоит исследовать, но были искренне убеждены в том, что в их распоряжении имеются уже все средства для решения чуть ли не любых задач.
В действительности же это было всего лишь обманчивое затишье перед бурей. И она разразилась почти одновременно и в физике и в математике. Возможно, такое совпадение не было простой случайностью. Историкам науки еще предстоит исследовать этот вопрос. Во всяком случае физика и математика развивались в тесной связи друг с другом.
То, что произошло в физике, достаточно общеизвестно. Был открыт целый ряд новых фактов, которые не укладывались в стройную и, казалось бы, непогрешимую картину мира, созданную классической физикой. Этот конфликт между теорией и природой привел к настоящей революции — появились совершенно новые физические теории: теория относительности и квантовая механика, новые не только в смысле новых положений и формул, но и в смысле совершенно нового подхода к пониманию явлений природы.
Кризис в математике разразился уже через два года. после оптимистического заявления Пуанкаре. Известный английский ученый Б. Рассел и независимо от него Цермелло обнаружили неожиданный парадокс. Оказалось, что стройные и, казалось бы, логически неуязвимые положения теории множеств приводят к вопиющему логическому противоречию. Суть его состоит в следующем.
Некоторые множества содержат сами себя в качестве одного из элементов. Например, множество всех абстрактных понятий само является абстрактным понятием и потому тоже входит в это множество.
Вполне правомерно, с точки зрения канторовской теории множеств, рассматривать и множество всех существующих вообще множеств или множество всех множеств, обладающих определенным свойством.
Вот и составим множество всех множеств, которые не являются своим собственным элементом, и назовем его множеством А. Но поскольку мы собрали все множества, обладающие таким свойством, среди них должно быть и само множество А. Следовательно, А принадлежит к числу множеств, которые являются своим собственным элементом. Но ведь мы составили множество А только из таких множеств, которые не входят сами в себя.