По ту сторону кванта
Шрифт:
Никого не удивляет тот факт, что запись шахматной партии позволяет повторить её даже много лет спустя. Конечно, при этом мы не узнаем, как долго она длилась в действительности, что переживали при этом шахматисты и как именно двигали они пешки и фигуры. Но это и неважно, коль скоро нам интересна только игра сама по себе.
Точно так же, если нам известны числа Xnk— эта своеобразная запись «атомной игры», — мы знаем об атоме
Числа Xnk нельзя назвать координатами электрона в атоме. Они заменяют их, или, как стали говорить позже, представляют их. Но что означают эти слова — на первых порах не понимал и сам Гейзенберг.
Действительно, вместо таблицы чисел {Хnk} с таким же успехом можно нарисовать всё, что угодно, скажем цветок, и сказать, что именно он представляет движение электрона в атоме. Однако тут же с помощью Макса Борна (1882–1970) и Паскуаля Иордана удалось понять, что таблица чисел {Хnk} не просто таблица, а матрица.
Что означает это слово? Математика имеет дело с величинами и символами, и каждый символ в ней подчиняется своим правилам действия. Например, простые числа можно складывать и вычитать, умножать и делить, и результат этих действий не зависит от того, в каком порядке мы эти действия производим: 5+3 = 3+5 и 5•3 = 3•5.
Но в математике есть и более сложные объекты: отрицательные и комплексные числа, матрицы и т. д. Матрицы — это таблицы величин типа {Xnk}, для которых существуют свои строго определённые операции сложения и умножения.
В частности, результат перемножения двух матриц зависит от порядка, в котором они перемножаются, и
{Xnk}•{Pnk} /= {Pnk}•{Xnk}
Это правило может показаться странным и подозрительным, но никакого произвола в себе не содержит. По существу, именно это правило отличает матрицы от других величин. Менять его по своей прихоти мы не вправе — в математике тоже есть свои незыблемые законы. Законы эти, независимые от физики и всех других наук, закрепляют на языке символов все мыслимые логические связи в природе. Причём заранее неизвестно, реализуются ли все эти связи в действительности.
Конечно, математики о матрицах знали задолго до Гейзенберга и умели с ними работать. Однако для всех было полной неожиданностью, что эти странные объекты с непривычными свойствами соответствуют чему-то реальному в мире атомных явлений. Заслуга Гейзенберга и Борна в том и состоит, что они преодолели психологический барьер, нашли соответствие между свойствами матриц и особенностями движения электронов в атоме и тем самым основали новую, атомную, квантовую, матричную механику.
Атомную — потому, что она описывает движение электронов в атоме.
Квантовую — ибо главную роль в этом описании играет понятие кванта действия h.
Матричную — поскольку математический аппарат, необходимый для этого, — матрицы.
В новой механике каждой характеристике электрона: координате x, импульсу p, энергии E —
сопоставлялись соответствующие матрицы: {Xnk}, {Pnk} и {Enk} — и уже для них (а не для чисел) записывали уравнения движения, известные из классической механики. А затем надо было только проследить, чтобы все действия над величинами {Xnk}, {Pnk}, {Enk} не нарушали правил математики.Гейзенберг установил даже нечто большее: он выяснил, что квантовомеханические матрицы координаты {Xnk} и импульса {Pnk} — это не вообще матрицы, а только те из них, которые подчиняются коммутационному (или перестановочному) соотношению:
{Xnk}•{Pnk} - {Pnk}•{Xnk} = i h,
где i = (-1), а h = h/2.
В новой механике это перестановочное соотношение играло точно такую же роль, как условие квантования Бора в старой механике. И точно так же, как условия Бора выделяли стационарные орбиты из набора всех возможных, коммутационное соотношение Гейзенберга выбирает из множества всех матриц только квантовомеханические.
Не случайно, что в обоих случаях — и в условиях квантования Бора, и в уравнениях Гейзенберга — необходимо присутствует постоянная Планка h. Как мы увидим в дальнейшем, постоянная Планка непременно входит во все уравнения квантовой механики, и по этому признаку их можно безошибочно отличить от всех других уравнений.
Новые уравнения, которые нашёл Гейзенберг, были непохожи ни на уравнения механики, ни на уравнения электродинамики и потому никак не могли их нарушить. С точки зрения этих уравнений состояние атома полностью задано, если известны все числа Xnk или Pnk, то есть известны матрицы {Xnk} или {Pnk}. Причём структура этих матриц такова, что в невозбуждённом состоянии атом не излучает.
Обратите внимание: в наших рассуждениях нигде не использовано понятие «движение электрона в атоме». Теперь оно просто не нужно. Согласно Гейзенбергу движение — это не перемещение электрона-шарика по какой-либо траектории вокруг ядра.
Движение — это изменение состояния системы во времени, которое описывается матрицами {Xnk} и {Pnk}.
Вместе с вопросами о характере движения электрона в атоме сам собой отпал и вопрос, об устойчивости атома. С новой точки зрения в невозбуждённом атоме электрон покоится, а потому и не должен излучать.
Теория Гейзенберга была внутренне непротиворечива, чего схеме Бора так недоставало. Вместе с тем она приводила к таким же результатам, что и правила квантования Бора. Кроме того, с её помощью удалось наконец показать, что гипотеза Планка о квантах излучения E=h• — это простое и естественное следствие новой механики.
Можно и дальше пытаться без формул излагать следствия механики Гейзенберга. Однако это будет так же неестественно, как попытка пересказать словами музыку.