Чтение онлайн

ЖАНРЫ

Шрифт:

Конечно, даже простой процесс отражения зелёного света от зеркала несколько сложнее, чем мы это сейчас представили. Но существует ещё одна — главная — трудность: в нашей стройной картине, где вместо волн света сплошь одни только кванты света, нет места опытам Фридриха, Книппинга и Лауэ, которые открыли дифракцию рентгеновых лучей и тем самым доказали их волновую природу.

Как примирить эти несовместимые представления: лучи-волны и лучи-кванты?

В следующей главе мы увидим, что квантовая механика справилась и с этой задачей.

ЭЛЕКТРОН: ЧАСТИЦА ИЛИ ВОЛНА?

Мы не думаем об этом каждый день, точно так же, как и об устройстве телефона. Мы просто пользуемся приборами, в которых электрон «работает», — телевизором, рентгеновским аппаратом, электронным микроскопом. Но если задуматься, как устроены эти аппараты,

то вопрос о природе электрона сразу потеряет свой академический характер.

В телевизионной трубке изображение получают с помощью электронов, которые разгоняются напряжением V 10 000 в. При этом они приобретают скорость v 5•109 см/сек — всего в шесть раз меньше скорости света. Длину их волны легко вычислить по формуле де Бройля: = h/mv, она равна 0,1 A то есть в 10 раз меньше размеров атома. И поскольку в телевизоре электроны распространяются прямолинейно, мы их воспринимаем как поток частиц.

В электронном микроскопе тот же электрон работает как волна: пучок электронов разгоняют напряжением в 100000 вольт до скорости 1010 см/сек, что соответствует длине волны в 0,05 A. Кроме того, этот пучок проходит через систему магнитных линз, точно так же, как в обычном микроскопе луч света проходит через линзы оптические. В волновой оптике хорошо известно, что из-за явлений дифракции даже в лучший микроскоп нельзя разглядеть предмет, если его размеры меньше, чем половина длины волны света, которым он освещён. Длина волны видимого света равна 5000 A, поэтому в обычный микроскоп можно различать лишь предметы, размеры которых превышают 2500 A. Размеры бактерий превышают 10– 4 см = 10 000 A, поэтому их легко наблюдать в обычный микроскоп. Но уже вирусы в такой микроскоп различить нельзя: их размеры меньше 1000 A (например, диаметр вируса гриппа всего 800 A).

Теоретически электронный микроскоп позволяет разглядеть объекты размером до 0,02 A, то есть в 50 раз меньше атома. Означает ли это, что мы можем таким способом рассмотреть отдельный атом? Нет, конечно. Энергия связи электрона в атоме (P) равна примерно 10 электрон-вольтам (энергия, которую приобретает электрон, пройдя разность потенциалов 10 в). А в электронном микроскопе электроны приобретают энергию около 100 тысяч электрон-вольт. Такие «лучи» сразу же, при первом столкновении с атомом, разрушат его. (В самом деле, легко сообразить, что если мы захотим получить на стене тень от пылинки, стреляя по ней из ружья, то ничего хорошего из такой затеи не выйдет.) Реально в электронный микроскоп удалось пока рассмотреть объекты размером 5 — 10 A, то есть в 5 — 10 раз больше атома.

ДИФРАКЦИЯ ЭЛЕКТРОНОВ

Как и многие открытия в физике, дифракция электронов была обнаружена во многом «случайно», хотя, как любил повторять Пастер, «случай говорит только подготовленному уму».

В 1922 году по заказу американской фирмы «Белл-телефон» Клинтон Джозеф Дэвиссон (1881–1958) и его сотрудник Кенсмен изучали отражение электронных пучков от поверхности металлов и вдруг заметили какие-то аномалии. В 1925 году, после работ де Бройля, ученик Макса Борна Вальтер Эльзассер предположил, что эти аномалии объясняются электронными волнами. Дэвиссон прочёл эту заметку, но не придал ей значения. В 1926 году он приехал в Европу и показывал свои графики Максу Борну и Джеймсу Франку в Гёттингене, а также Дугласу Хартри в Оксфорде. Все они единодушно признали в них волны де Бройля. В пути через океан Дэвиссон изучал работы Шрёдингера и вскоре по приезде в Америку вместе с Лестером Альбертом Джермером (род. 1896) подтвердил гипотезу де Бройля опытом.

Дж. П. Томсон подошёл к проблеме с другого конца. Он с самого начала относился к гипотезе де Бройля с большим сочувствием и вскоре после посещения Англии Дэвиссоном стал обдумывать способы доказать её на опыте. В Англии после работ Крукса и Дж. Дж. Томсона опыты с катодными лучами стали непременным и привычным элементом образования. Быть может, поэтому Дж. П. Томсон прежде всего задумался, а нельзя ли приспособить их для новых опытов. Почти сразу же отыскалась подходящая готовая установка в Абердине, с которой работал студент Александр Рейд. Уже через два месяца они получили на этой установке прекрасные фотографии дифракции электронов, которые в точности напоминали дифракцию рентгеновых лучей. Это было

естественно, поскольку в их опытах электроны ускорялись потенциалом в 150 вольт (обычное напряжение городской сети). Длина волны таких электронов равна примерно A = 10– 8 см, то есть сравнима с длиной волны рентгеновых лучей и с размерами атомов.

Небольшая справка: Джордж Паджет Томсон — сын знаменитого Джи-Джи — Джозефа Джона Томсона, который в конце века установил, что электрон — это частица. По иронии судьбы тридцать лет спустя сын доказал, что электрон — это волна. И оба они правы, оба удостоены Нобелевской премии, за свои открытия.

ЗАГАДОЧНАЯ БУКВА

Греческую букву («пси») для обозначения волновой функции Шрёдингер выбрал более или менее случайно. Но для многих она стала неким символом непонятности квантовой механики. Чтобы лишить её мистического ореола, предлагаем читателям проследить предполагаемую эволюцию буквы «буки» древнерусского письма «глаголицы» и её связь с более древними знаками и символами.

ГЛАВА ВОСЬМАЯ

Корпускулярно-волновой дуализм — Соотношение неопределённостей Гейзенберга — Принцип дополнительности

В начале 20-х годов Макс Борн и Джеймс Франк — физики и Давид Гильберт — математик организовали в Гёттингене «семинар по материи». Его посещали и признанные в то время учёные, и знаменитая впоследствии молодёжь. Почти каждый семинар Гильберт начинал вопросом:

«Итак, господа, подобно вам, я хотел бы, чтобы мне сказали точно: что такое атом?»

Глава восьмая

Сейчас мы знаем об атоме больше, чем все участники семинара тех лет, однако ответить Гильберту мы ещё не готовы. Дело в том, что до сих пор мы узнали довольно много фактов, но нам пока недостаёт понятий, чтобы эти факты правильно объяснить.

Благодаря Нильсу Бору даже сейчас, много лет спустя, при слове «атом» мы непроизвольно представляем себе маленькую планетную систему из ядра и электронов. Только потом усилием воли мы заставляем себя вспомнить, что ему присущи также и волновые свойства. Сейчас, как и прежде, обе идеи — «электрон-волна» и «электрон-частица» — существуют в нашем сознании независимо, и невольно мы пытаемся от одной из них избавиться. «Электрон или волна?» — к этому вопросу в 20-х годах физики возвращались постоянно, стремясь, как и все люди, к определённости.

К началу 1926 года в атомной физике сложилось любопытное положение: порознь и независимо возникли сразу две квантовые механики, исходные посылки которых резко различались. Гейзенберг вслед за Бором был убеждён, что электрон — частица, и свои матричные уравнения написал в этом убеждении. А Шрёдингер смог вывести своё дифференциальное уравнение, только поверив вместе с де Бройлем в волновые свойства электрона.

Гейзенберг требовал, чтобы в уравнения входили только те величины, которые можно непосредственно измерить на опыте: частоты спектральных линий и их интенсивности. На этом основании он исключил из теории понятие «траектория электронов в атоме», как величину, в принципе не наблюдаемую. Шрёдингер тоже не использовал понятия траектории, однако записал своё уравнение для – функции, которая также измерена быть не может и смысл которой даже ему самому оставался пока неясным.

Опыт — последний судья во всех спорах — вначале решительно стоял на стороне матричной механики. В самом деле, Фарадей обнаружил неделимость электрического заряда, и дальнейшие опыты Крукса и Томсона строго это доказали. Таким свойством может обладать только частица. Опыты Милликена и фотографии следов электрона в камере Вильсона устранили последние в этом сомнения.

Сомнения

Однако представления об электроне-частице резко противоречили факту удивительной стабильности атома. Мы много раз подчёркивали, что планетарный атом неустойчив. Именно для того, чтобы объяснить устойчивость атома и в то же время сохранить представление об электроне-частице, Бор и придумал свои постулаты.

Поделиться с друзьями: